
Observatory of Trends in Software Related Microblogs

Palakorn Achananuparp, Ibrahim Nelman Lubis, Yuan Tian, David Lo, Ee-Peng Lim
Singapore Management University, Singapore

palakorna@smu.edu.sg, lubisnelman@smu.edu.sg,
yuan.tian.2011@exchange.smu.edu.sg, davidlo@smu.edu.sg, eplim@smu.edu.sg

ABSTRACT
Microblogging has recently become a popular means to dis-
seminate information among millions of people. Interest-
ingly, software developers also use microblog to communi-
cate with one another. Different from traditional media,
microblog users tend to focus on recency and informality
of content. Many tweet contents are relatively more per-
sonal and opinionated, compared to that of traditional news
report. Thus, by analyzing microblogs, one could get the
up-to-date information about what people are interested in
or feel toward a particular topic. In this paper, we describe
our microblog observatory that aggregates more than 70,000
Twitter feeds, captures software-related tweets, and com-
putes trends from across topics and time points. Finally,
we present the results to the end users via a web interface
available at
http://research.larc.smu.edu.sg/palanteer/swdev.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: Misc.

General Terms
Human factors, Design

Keywords
Software Development, Twitter, Visualization, Exploration

1. INTRODUCTION
Microblogging services, such as Twitter, provide a conve-

nient way for millions of people to communicate with one
another thanks to their informal and timely natures. Twit-
ter users typically compose a short microblog (up to 140
characters in length), also known as tweet, to express their
thoughts on various subjects. Because of the sheer sizes and
scopes of tweets, Twitter is a great venue for studying infor-
mation diffusion among the networks of users.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3Ű7, 2012, Essen, Germany
Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$10.00.

Interestingly, software developers and users of software
systems also tweet. One could potentially learn many inter-
esting things from their tweets. Information such as: new
features of a software system, new programming methodol-
ogy, new conferences, new bugs, new issues, new solutions,
new feature requests, etc., could be disseminated via the
tweets. These provide a rich source of information well
suited for software development where many new “events”
happen periodically. If these tweets could be distilled into
knowledge, one could in effect learn from the wisdom of the
crowd. Moreover, given that informal communication plays
an important role in software development projects [2, 3,
5], a study of how microblogs facilitate communications in
software development activities may help uncover valuable
insights into many software development processes.

Unfortunately, there has been little study on investigat-
ing the behavior of a particular sub-community of Twitter
users. In a related study, we manually investigate what types
of information content are contained in software engineer-
ing community microblogs, e.g., commercials, opinion, tips,
etc [7]. In this study, different from the above, we build
a visual analytics observatory that computes trends (both
across topics and time points). Recent software engineering
studies have analyzed various social media sources, such as
blogs, forums, etc. [5, 3]. Recently, [4, 1] proposed the
integration of social media into software development pro-
cesses. However, few studies provide a practical solution
to aggregate and analyze the wealth of software engineering
information available in microblogs.

It is challenging to analyze the Twitter data. First, there
are millions of users producing millions of tweets daily. As
such, storing all tweets is technically impractical. Second,
many Twitter users tweet about various subjects, not neces-
sarily limited to software development, thus filtering out the
irrelevant tweets is not trivial. Third, the massive number
of tweets may contain useful software-related trends which
are neither apparent nor readily available to Twitter users.
Although one can use freely available tools to capture Twi-
iter feeds, their polling capacity are quite limited, making
them unsuitable for constructing a large repository of soft-
ware development-centric Twitter data.

To address the above challenges, there is a need for a
scalable approach that is able to aggregate tweets made by
Twitter users who are likely to tweet about software devel-
opment. The approach needs to allow the users to perform
visual analytics to better understand recent trends and de-
velopments from the data. Furthermore, it should allow for
frequent periodic updates as new tweets and relationships

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’12, September 3–7, 2012, Essen, Germany
Copyright 2012 ACM 978-1-4503-1204-2/12/09 ...$15.00

334

are made daily. In this study, we present a system that
satisfies the above criteria.

We build a visual analytics observatory that capture top-
ical trends and longitudinal trends. Topical trends capture
relative popularity of various groups of topics. Longitudi-
nal trends capture relative popularity of a topic at various
points in time. We believe these trends could provide vari-
ous insights to software developers, e.g., learning about the
emerging topics that other developers care about, such as
critical bugs, project management techniques, etc.

We took a user-centric approach of gathering the tweet
data to be used by such an observatory. Specifically, we first
build a sizable set of candidate users that are more likely
to tweet about software engineering related topics. Next,
we periodically download tweets made by these users, pre-
process such tweets, store, and index them in a database.
This database is later processed to compute topical and lon-
gitudinal trends which are later presented to the end users
via a web interface. The prototype of our web application
is accessible via a following URL:

http://research.larc.smu.edu.sg/palanteer/swdev

The contributions of this study are as follows:

1. We propose a solution that aggregates and processes
software engineering related microblogs into topical
and longitudinal trends and present them to the end
users for visual analytics.

2. We have performed a preliminary analysis on a few
interesting trends that we capture from 70,000 Twitter
feeds first logged since June 2011.

The structure of this paper is as follows. In Section 2, we
present our proposed framework. In Section 3, we present
our preliminary study and highlight some interesting topical
and longitudinal trends. In Section 4, we present related
studies. We conclude and describe future work in Section 5.

2. PROPOSED FRAMEWORK
Our framework is illustrated in Figure 1; It is composed

of three blocks: User Base Creator, Tweet Processor, and
User Interface. The User Base Creator block extracts a
set of Twitter users that are likely to tweet about software-
related contents. The Tweet Processor block extracts tweets
produced by the selected set of users. It also pre-processes,
indexes, and stores the tweets. The User Interface block
presents an web interface for the users to query and analyze
the data.

Figure 1: Proposed framework

2.1 User Base Creator
Among the millions Twitter users, not everyone tweets

about software engineering topics. Thus, we would need to
create a sizable user base that is likely to produce software
engineering related tweets.

To accomplish this, our system takes in a set of seed users
(SEED). In this case, the seed users are well-known Twit-
ter users that actively tweet about software topics. These
users are manually identified1; for example, Jeff Atwood,
Jason Fried, and John Resig. We assume that any Twit-
ter users who follow or are followed by 5 popular developers
are interested in software development and likely to tweet
about the topic. Given the assumption, we proceed to ex-
pand our software-centric user base by traversing the seed
users’s friend and follower networks.

We make use of the follow links in Twitter. If Bob fol-
lows Alice in Twitter, any tweets published by Alice will
be automatically broadcast to Bob. We could traverse the
follow links of these seed users bidirectionally to substan-
tially expand the user base. A set of seed users and their
friends (the users whom they follow) and followers (the users
who follow them) is denoted by UBase. Moreover, we con-
tinuously expand UBase according to the changes in their
friends and followers as they are periodically observed. We
further elaborate on the update process in the next Section.
As of May 9, 2012, there are approximately 70,000 unique
users in UBase.

2.2 Twitter Data Processor
Our Twitter data processor block consists of three steps:

tweet and follow links download, tweet pre-processing and
indexing, and trend analysis.

Tweet & Follow Link Download. We automatically
download all the latest tweets published by each user in
UBase using the Twitter REST API and a Twitter whitelisted
account. A whitelisted account is permitted to make 20,000
API calls per hour, as opposed to 350 calls per hour of a
non-whitelisted one. Because of an API limitation2, up to
3,200 tweets of any user can be retrieved at a given time.
Thus, at the initial tweet download, the completeness of the
tweet data are constrained by the API functionality. How-
ever, after polling data for the first time, we continue to
collect UBase’s tweets on a daily basis. This guarantees a
near complete snapshot of the subsequent tweet data as no
users in UBase publishes more than 3,200 tweets in a single
day. In addition, we also download the follow links for all
users in UBase everyday using the API. After which, the
set of users in UBase are updated according to the newly
inserted or removed friends and followers of UBase. On av-
erage, 177K tweets and 100K follow links are downloaded in
one day.

Tweet Pre-Processing & Indexing. We then perform
common text pre-processing steps namely: tokenization, stop-
word removal, and stemming. We use whitespace and punc-
tuation as the delimiters for tokenization, remove common
English language stop words, and utilize Porter stemmer
to reduce a word to its root form. We manually mark some
technical synonyms and jargons that should not be stemmed

1http://www.noop.nl/2009/02/twitter-top-100-for-
software- developers.html.
2https://dev.twitter.com/docs/rate-limiting

335

e.g., C# vs. CSharp, C++, etc. Finally, we index all pro-
cessed tweets. To accomplish these tasks, we employ an open
source search platform Apache Solr3. Our tweet processor
can be re-run at various points in time such that new tweets
could be included into the repository.

Trend Analysis. Next, we process the tweets to compute
both topical and longitudinal trends. To compute topical
trend, we manually select a set of 100 software-related top-
ics, e.g., JavaScript, Scrum, etc., from relevant Wikipedia
pages and popular StackOverflow.com’s tags. We further
divide them into three groups namely: 1. Programming Lan-
guages, 2. Frameworks, Libraries, and Systems, and 3. Pro-
gramming Concepts and Methodologies. We then compute
for each topic the number of tweets mentioning the topic
at a specific time period. Topics that are more frequently
mentioned are more popular than others. To derive the lon-
gitudinal trend of a particular topic or keyword, we compute
the number of tweets containing it at various points in time.
We thus could compute the popularity of various topics and
the popularity of a topic at various time points. Note that
although Twitter has officially published a list of trending
topics for a specific locale, these topics are extracted from
all tweets. We believe the Twitter trending topics are not
particularly useful to us since they are not categorized and
likely dominated by many non-software related topics.

2.3 User Interface
We implemented a simple web application using PHP and

MySQL to provide access to the processed Twitter data.
Our user interface supports both browsing and searching
modalities. A snapshot of the user interface is shown in Fig-
ure 2. To facilitate browsing of software-related topics, the
main user interface displays the three topic groups. For each
group, we show topical trend; topics that are more frequently
tweeted in the repository are shown using a larger text size.

A user can click any topics in the three groups. After this,
a line chart showing the number of tweets containing the
topic over time would be shown. This chart represents the
longitudinal trend of the topic. An example of this chart for
“Scrum” is shown in Figure 3. Users could also investigate
the context (e.g., the actual tweets or frequent words) at
various points in time by clicking at the points along the line
chart. An example of the resultant UI showing the words
co-occurring frequently with “Scrum” on March 28, 2012 is
displayed in Figure 4. Additionally, one can also enter any
free-text queries in the top right text box. A similar line
chart would also be plotted for this query. Multiple queries,
separated by commas, can also be submitted together to
generate multiple trend lines for comparison.

3. PRELIMINARY STUDY

3.1 Dataset
Our framework takes in a number of parameters: a set

of s seed users and a set of t topics. For the set of seed
users, we utilize the public list of popular Twitter users to
identify the top-100 software developers that tweet. As de-
scribed in Section 2, we include 100 software-related topics
and divide them into 3 main categories. In this work, the
values of s and t are 100. Next, we began polling Twitter

3http://lucene.apache.org/solr/

Figure 2: User interface & topical trends

Figure 3: Longitudinal trend on “Scrum”

Figure 4: Background information about “Scrum”
on March 28, 2012

data on a daily basis since June 2011. Given the limita-
tion of the Twitter APIs, the oldest tweet we could retrieve
thus far was published in July 2007. As of May 9, 2012, the
whole dataset comprises approximately 70,000 unique users,
21 million follow links, and over 85 million tweets.

3.2 Interesting Trends
With the topical trend analysis, users can visually inspect

the topics in which software engineering community in Twit-
ter are interested. For example, we find that Java, PHP, and
Javascript are the three popular languages mentioned by
Twitter users during the last 24 hours of May 9, 2012. The
corresponding topical trend interface is shown in Figure 2.
Similarly, by comparing different software engineering con-
cepts and methodologies, we find that Agile, Open Source,
and Collection are the three most popular software-related
concepts.

With longitudinal trend analysis, users can examine the
popularity of a topic across time points. For example, from
Figure 3, we can see that the tweeting frequency related to
Scrum goes up and down periodically. A “sawtooth” pat-
tern reflects a variation of activities during a typical work-
ing week. This pattern can be observed in the trend lines
of other generic topics, e.g., Javascript, PHP, etc. Next, we
can also identify events corresponding to the unusual peaks

336

Figure 5: Longitudinal trend about “GitHub secu-
rity”

Figure 6: Comparing the longitudinal trends in
the developer-centric (top) and general repositories
(bottom)

or dips in the trend line. For example, we notice that there
is an unusual peak in the number of tweets on March 28,
2012. Upon further inspection, we find that there was a
rigorous discussion in social media about the differences be-
tween two agile development methods, Scrum and Kanban.
When a more specific topic is used, a more “bursty” trend
line may be observed. For instance, Figure 5 shows a longi-
tudinal trend “GitHub security” related to the security issue
of GitHub, a popular online project hosting site. In this
case, we can clearly see a sudden peak on March 5, 2012
corresponding to the hacking incidence.

Figure 6 displays a comparison between three trend lines
about“Scrum”,“visualization”, and“Justin Bieber”, observed
in the proposed software-developer centric repository (top),
compared to those in a general (bottom) repository4, built
using a different seeding set who are those interested in gen-
eral topics. As we can see, our framework effectively filters
out noisy topics which are less relevant to the software de-
velopment community, e.g., Justin Bieber, etc., while rea-
sonably captures the relevant trends.

4. RELATED WORK
Social Media for Software Engineering. There have
been a number of studies that proposed the integration of so-
cial media with IDE and software development [4, 1]. Pagano
and Maleej analyzed how open source communities blog [5].
Gottipati et al. built a semantic search engine to effectively
find answers in software forums [3]. In this study, we build
an analytics engine that downloads, pre-processes, indexes,
and stores microblog data. It also computes trends from the
data, and presents them to the end users for insights.

Network Mining in Software Engineering. There have
also been a number of studies in software engineering do-

4http://research.larc.smu.edu.sg/palanteer/

main that analyzed socio-technical network and utilized so-
cial network mining techniques. Bird et al. analyzed social
network created from email communications among devel-
opers [2]. Surian et al. and Hong et al. analyzed developer
socio-technical network in SourceForge.Net [6].

Twitter Analytics Our solution can be contrasted with
Twitter Analytics applications, such as the Archivist5. Un-
like the Archivist, our tweet observatory specifically focuses
on the software engineering domain. Moreover, our interface
encourages more serendipitous discovery of other interesting
software engineering topics through a topical trend brows-
ing. Since we exclusively focus on the software development
community, our data are also less prone to noise than the
Archivist’s.

5. CONCLUSION AND FUTURE WORK
In this work, we propose a web application that collects,

processes, and presents the Twitter data generated by a se-
lected and evolving set of software developers to the end
users as trends via the topical and longitudinal trend analy-
sis interface. We have also found some interesting trends
in our preliminary experiments. In the future, we plan
to track the Twitter feeds in realtime and perform more
sophisticated analysis on the data. Furthermore, we plan
to build a system that could automatically summarize mi-
croblog contents, identify important events, and allow users
to discover more nuggets of knowledge from the massive mi-
croblog data.

6. ACKNOWLEDGMENTS
This research is supported by the Singapore National Re-

search Foundation under its International Research Centre
@ Singapore Funding Initiative and administered by the
IDM Programme Office.

7. REFERENCES
[1] A. Begel, R. DeLine, and T. Zimmermann. Social

media for software engineering. In Workshop on Future
of Software Engineering Research, 2010.

[2] C. Bird, A. Gourley, P. T. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. In
MSR, pages 137–143, 2006.

[3] S. Gottipati, D. Lo, and J. Jiang. Finding answers in
software forums. In ASE, 2011.

[4] A. Guzzi, M. Pinzger, and A. van Deursen. Combining
micro-blogging and ide interactions to support
developers in their quests. In ICSM, 2010.

[5] D. Pagano and W. Maalej. How do developers blog? an
exploratory study. In MSR, 2011.

[6] D. Surian, N. Liu, D. Lo, H. Tong, E.-P. Lim, and
C. Faloutsos. Recommending people in developers’
collaboration network. In WCRE, 2011.

[7] Y. Tian, P. Achananuparp, I. Lubis, D. Lo, and E.-P.
Lim. What does software engineering community
microblog about? In MSR, 2012.

5http://archivist.visitmix.com/

337

