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ABSTRACT 
Biomedical images and captions are one of the major sources of 
information in online biomedical publications. They often contain 
the most important results to be reported, and provide rich 
information about the main themes in published papers. In the 
data mining and information retrieval community, there are a lot 
of research works on using text mining and language modeling 
algorithms to extract knowledge from the text content of online 
biomedical publications; however, the problem of knowledge 
extraction from biomedical images and captions has not been 
fully studied yet. In this paper, a hierarchical probabilistic topic 
model with background distribution (HPB) is introduced to 
uncover the latent semantic topics from the co-occurrence 
patterns of caption words, visual words and biomedical concepts. 
With downloaded biomedical figures, restricted captions are 
extracted with regard to each individual image panel. During the 
indexing stage, the ‘bag-of-words’ representation of caption 
words is supplemented by an ontology-based concept indexing to 
alleviate the synonym and polysemy problems. As the visual 
counterpart of text words, the visual words are extracted and 
indexed from corresponding image panels. The model is 
estimated via collapsed Gibbs sampling algorithm. We compare 
the performance of our model with the extension of the 
Correspondence LDA (Corr-LDA) model under the same 
biomedical image annotation scenario using cross-validation. 
Experimental results demonstrate that our model is able to 
accurately extract latent patterns from complicated biomedical 
image-caption pairs and facilitate knowledge organization and 
understanding in online biomedical literatures. 

Categories and Subject Descriptors 
H.2.8 [DATABASE MANAGEMENT]: Database applications – 
Data mining; Image databases; I.2.6 [ARTIFICIAL INTELLI-
GENCE]: Learning 

General Terms 
Algorithms, Experimentation, Theory. 

Keywords 
Probabilistic models, topic learning, bioinformatics, Gibbs 

sampling, visual words, automatic image annotation. 

1. INTRODUCTION 
 Scientific research activities in biomedical and life science 
produce hundreds of thousands of digital publications each year. 
Although there are several public available digital databases such 
as PubMed Central, which provide users immediate access to full-
text biomedical and life science journal articles, users are still 
facing a difficult task of organizing the massive information from 
the digital repositories. In particular, it is extremely difficult for 
users to handle the highly complicated process of mapping the 
visual content in biomedical images to various domain-specific 
terms and concepts in corresponding captions.  
Biomedical images and captions are one of the major information 
sources in online biomedical literatures; they contain the most 
important results to be reported and provide rich information 
about the main themes in the published papers. Compared to free-
form image captions (such as that from social network data source, 
like Flickr.com and Facebook.com), which are characterized by 
user-sensitive descriptions, the image captions in biomedical 
literatures have relatively standard representation with restricted 
terms used and always highly conform to the image content. In 
extracting biomedical concepts from captions, polysemies and 
synonyms are the major barrier. Biomedical ontologies (such as 
UMLS) provide the ability to overcome the polysemy and 
synonym problems.  Therefore, if we can uncover the latent 
themes from the co-occurrence patterns of image content, caption 
words and biomedical concepts, we will be able to help biologists 
to find, understand and organize complicate knowledge from 
biomedical figures and satisfy their information needs. 
In order to achieve that aim, the first issue is to bridge over the 
‘semantic gap’ between image features and the user [2], which is 
to identify a set of image features that well preserve the semantic 
consistency of image content. Recently, the ‘bag-of-visual-words’ 

[6] approach exhibits very good performance in image 
categorization and semantic image retrieval across several well-
known databases such as the LabelMe, the TRECVID and the 
Visual Object Classes (VOC) datasets [4, 8, 10, 16]. The underlying 
assumption of this approach is that, the patterns of different image 
categories can be represented by different distributions of 
microstructures (key-points). As an image document can be 
constantly represented as an unordered collection of key-points 
which carry rich local information, it can to some extent be 
regarded as a ‘bag of visual words’. In practice, image patches 
containing key-points are quantified based on affine invariant 
local descriptors [9, 11, 13]. Sivic et al. further proposed the idea of 
assigning all the patch descriptors into clusters to build a 
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‘vocabulary’ of ‘visual words’ for a specific image set [6]. As a 
visual counterpart of the ‘bag-of-word’ model, the ‘bag-of-visual-
words’ approach usually represents each image as a vector of 
visual words based on the visual term frequency [4, 6]. 

After representing image content as ‘bag-of-visual words’, the 
second issue is to uncover latent semantic themes from the co-
occurrence patterns of image content (i.e. the extracted ‘bag-of-
visual words’), text captions and ontology-based concepts. In the 
data mining and information retrieval community, there are many 
research works on using probabilistic models to learn latent topics 
from text content (such as the abstract) in online publications. 
Several effective probabilistic models such as the Naïve Bayesian 
model, the Probabilistic Latent Semantic Indexing (pLSI) model [1] 
and the Latent Dirichlet Allocation (LDA) model [19] are proposed. 
Particularly, the LDA model has been very popular with the text 
mining community due to its solid theoretical foundation and 
promising performance. Despite the success of these models in 
text mining, however, the problem of topic learning from both 
images and captions has not been fully studied yet. Although 
there are some approaches toward modeling latent topics from 
visual words, such as directly using LDA [17] and using Spatial 
Latent Dirichlet Allocation [18]. However, to the best of our 
knowledge, there has not been any study combining visual words, 
text captions and ontology-based concepts in one single 
probabilistic model. 

The Correspondence LDA (CorrLDA) model [7], initially 
proposed by Blei et al. for automatic image annotation, provides a 
natural way to learn the correlation between text words and other 
entities. In this model, topic generated from text words are used to 
generate other entities (such as image features). By extending the 
entities in the CorrLDA model to visual words and ontology-
based biomedical concepts, it’s not difficult to establish a 
probabilistic model that uncovers latent themes from the co-
occurrence patterns of caption words, visual words and 
biomedical concepts.  

Although the CorrLDA model is able to learn latent topics from 
the image-caption pairs, however, as indicated in our study, the 
discovered topics can be overwhelmed by several background 
words that frequently appear in the database. With this 
consideration, a hierarchical probabilistic topic model with 
background distribution is presented in this paper. With 
downloaded biomedical figures, restricted captions are extracted 

with regard to each individual image panel. During the indexing 
stage, the ‘bag-of-words’ representation of caption words is 
supplemented by an ontology-based concept indexing to alleviate 
the synonym and polysemy problems. As the visual counterpart of 
text words, the visual words are extracted and indexed from 
corresponding image panels. The model is estimated via collapsed 
Gibbs sampling algorithm, while the parameter selection is 
achieved by studying the likelihood and perplexity. We compare 
the performance of our model with the extension of the 
Correspondence LDA (Corr-LDA) model under the same 
biomedical image annotation scenario using cross-validation. 
Experimental results demonstrate that our model is able to 
accurately extract latent patterns from highly complicated 
biomedical image-caption pairs, facilitate knowledge organization 
and understanding in online biomedical literatures. 

The remainder of this paper is organized as follows. In Section 2, 
we describe the procedure of preprocessing and indexing of 
biomedical figures. In Section 3, we present the extension of 
CorrLDA model and our hierarchical probabilistic topic model 
with background distribution. Section 4 provides the collapsed 
Gibbs sampling algorithms for inference and learning the 
proposed probabilistic models. Section 5 reports the experimental 
results of the proposed method and compares our approach to the 
extension of CorrLDA model. We conclude the paper in Section 6. 

2. PREPROCESSING AND INDEXING OF 
BIOMEDICAL FIGURES 
2.1 Figure Preprocessing 
In our research, we deal with biomedical figures downloaded 
from the PubMed Central web pages. Generally, a biomedical 
figure involves two parts, that is, a single image composed with 
one or multiple image panels (sub-images) and the corresponding 
captions. Therefore, the preprocessing section of biomedical 
figures has two parts, the image processing part and the caption 
processing part.  

Within the downloaded biomedical figures, images are segmented 
into several individual image panels. It should be pointed out that 
there are image panels which contain flow charts or diagrams. 
These image panels do not carry substantial visual content. 
Therefore, they are filtered out using basic region segmentation 
method. 

Identifying Image Pointer in image panels: Identifying Image Pointer in Captions:

Macrophage and eosinophil distribution during mammary 
gland development and differentiation. (a-e) Longitudinal 
paraffin section of a terminal end bud (TEB) was stained 
twice, first with hematoxylin/eosin (H/E) (d) and then, after 
destaining, by immunostaining with anti-F4/80 antibody 
and counterstaining with hematoxylin (a-c). The F4/80+ 
cells were detected with a peroxidase-coupled detection 
system (brown coloration). (b,c,d) High-magnification 
pictures of (a). (b) bottom frame; (c,d) top frame. …

Global caption: macrophage eosinophil distribution during 
mammary gland development differentiation

Restricted caption of (a): longitudinal paraffin section, 
terminal end bud (TEB), stained, anti-F4/80 antibody, 
counterstaining, hematoxylin(a)

Optical Character Recognition (OCR)

...

...

... (h)

Sub-images

Image pointers

 
(a) Image preprocessing                             (b) caption preprocessing                                

Fig. 1 Biomedical figures preprocessing 



In captions texts, there are some parenthesized expressions refer 
to specific image panels. Most of them are simply composed of 
single letter such as (A), (b) or letters connected by conjunction, 
such as (a and b), (b,c) and (a-c). We refer to these parenthesized 
expressions as image pointers (as marked by red color in Fig. 1b). 
We develop a set of rules to extract these regular image pointers 
in captions, which is similar to the HANDCODE2 method in [5].   

Image pointers are commonly placed in some important positions 
(such as upper left and lower left corner) of image panels. 
Therefore, we apply the Asprise OCR Java SDK toolkit 1  for 
optical character recognition (OCR) in sub-images of image 
corners (Fig. 1a). The OCR toolkit achieved a moderate precision 
in our image pointer extraction, which is sufficient for our 
research. We check the image pointer extraction results and make 
necessary manual corrections. 

In a figure with multiple image panels, instead of replicating the 
entire caption to each image panel, we develop a restricted 
caption scanner to identify restricted captions (Fig. 1b) with 
regard to the image pointer of each image panel. The association 
of texts and image pointers are determined according to different 
cases, such as image pointers locate at the beginning of a sentence, 
preceded by preposition and noun phrases, followed by a clauses, 
etc. Generally, the undergoing image pointer(s) for captions are 
disabled when the scanner meets another image pointer or reaches 
the end of a clause or a sentence. All the texts that don’t have any 
assigned image pointers are regarded as global captions (Fig. 1b). 

The image panel and captions associated with the same image 
pointer are named as an image-caption pair. In an image-caption 
pair, the final caption words are generated via a linear 
combination of restricted captions and global captions, which 
avoids the over-representation problem and preserves the 
uniqueness of each individual image panel. Each image-caption 
pair is assigned a unique ID like ‘bcr1011-1_a’, in which 
‘bcr1011’ is the PubMed Central article ID, ‘1’ is the number of 
figure in the article, while ‘a’ is the name of image pointer of a 
given image panel. 

2.2 Image-Caption Pairs Indexing 
During the indexing stage, we choose to represent the image 
content in each image-caption pair as a ‘bag-of-visual-word’. 
Firstly, we adopt the Difference-of-Gaussian (DoG) salient point 
detector [13] to detect salient points from images. The detection is 
achieved by locating scale-space extreme points in the difference-
of-Gaussian images. The main orientations of salient points are 
determined by image gradient. Image patches containing the 
salient points are then rotated to a canonical orientation and 
divided into 4×4 cells. In each cell, the gradient magnitudes at 8 
different orientations are calculated. Consequently, each salient 
point is described by a 128-dimensional SIFT descriptor. 
Compared to other local descriptors, the SIFT descriptor is more 
robust and invariable to rotation and scale/luminance changes [11]. 
The SIFT descriptors extracted from training images are clustered 
into 1000 clusters using k-mean clustering to establish a codebook 
of ‘visual words’, with each cluster center as a ‘visual word’. As 
shown in Fig. 2, the image indexing is achieved by computing the 

                                                                 
1 The toolkit is downloaded from the home page of LAB Asprise!  

( http://asprise.com/product/ocr/selector.php ) on Dec. 2008 

term frequency and building index of visual words for each image 
panel. 
The indexing of captions results in two parts, the term index and 
the concept index (Fig. 2). The term index is simply obtained by 
calculating the term frequency of caption words after lemmatizing 
and stop-word removal. In our approach, the Van Rijsbergen's 
stop-word lists [14] and the UMLS biomedical stop-word list [15] are 
used to remove non-content-bearing terms.  
The concept index is achieved by calculating the term frequency 
of concepts according to the results of concept extraction. In 
biomedical ontology, a concept carries a unique meaning and 
represents a set of synonymous terms. For example, C0006149 is 
a concept about the benign or malignant neoplasm of the breast 
parenchyma in Unified Medical Language System (UMLS) [15]. It 
represents a set of synonyms including Breast Neoplasm, Breast 
Tumor, tumor of the Breast and Neoplasm of the Breast. 
Compared to individual words and multiple word phrases, a 
concept is more meaningful, therefore, used as indexing terms in 
large-scale biomedical literatures. In our approach, we adopt 
MaxMatcher [12], a dictionary-based biological concept extraction 
tool, to extract UMLS concept from captions. 

 
Fig. 2 The workflow for image-caption pair indexing 

3. PROBABILISTIC MODELS FOR TOPIC 
LEARNING 
In this paper, we mainly focus on learning latent semantic topics 
from biomedical image and captions. The underlying philosophy 
is that, an image-caption pair may deal with multiple topics; and 
the co-occurrence patterns of caption words, visual words and 
biomedical concepts in this image-caption pair are related to some 
unseen latent semantic variables, which indicate the 
presence/absence of specific topics. 

In this section, we will present two probabilistic models, one is 
the extended Correspondence LDA (CorrLDA) model and the 
other is our proposed hierarchical probabilistic topic model with 
background distribution (HPB). For clarity of the notations, we 
name each image-caption pair as a document. Some notations to 
be used in the two probabilistic models are list as follows: D is the 
number of documents, T is the anticipated number of latent topics, 
Nd is the total number of text words in document d, Nc

d denotes 
the total number of extracted biomedical concepts in document d, 
while Md represents the total number of extracted visual words in 
document d.  



                             
(a) Extension of correspondence LDA (CorrLDA) model                            (b) proposed HPB model 

Fig. 3 The extension of CorrLDA model and the hierarchical probabilistic model with background distribution (HPB), Yellow 
cycles represent the observation of words, concepts and visual words. The red dash line in (b) denotes a variation of HPB model. 

3.1 The Extension of Correspondence LDA 
CorrLDA model [7] provides a natural way to learn latent topics 
from text words and other entities. Therefore, our topic learning 
problem can be addressed by extending the entities in the 
CorrLDA model to visual words and ontology-based biomedical 
concepts. The differences between our extension and the original 
CorrLDA model are twofold, firstly, we combine visual words, 
text captions and ontology-based concepts in one single model; 
secondly, the original model only takes use of global image 
features such as color and texture, while our extension deals with 
visual words, which is robust than global image features and have 
similar statistical properties with text words (which are assumed 
to fit multinomial distributions). 

The generative process for the extend CorrLDA model is: 

 
In the first step, a T-dimensional topic-prior vector θd is sampled 
for each document d, with the tth dimension of the vector 
represents the prior probability of the tth topic in d. For each 
document d, the generative process of the Nd words is achieved by 
sampling topics from the document-topic multinomial distribution 
(with Dirichlet prior θd) and sampling words from the topic-word 
multinomial distribution (with Dirichlet prior φt). The generative 

process of the Nc
d concepts and Md visual words are similar with 

that of the Nd words; the only difference is that only the topics 
that associated with the Nd words in document d are used to 
generate concepts and visual words. Parameters 

, ,  and α β β' β'' are hyperparameters for the Dirichlet priors. In 
our approach, we assume symmetric Dirichlet priors, with 

, , '  and ''α β β β  being scalar parameters.  

3.2 Hierarchical Probabilistic Model with 
Background Distribution (HPB) 
Although the CorrLDA model is able to learn latent topics from 
the image-caption pairs and establish direct correlation among 
words, visual words and concepts, however, after looking into the 
discovered topics from the data collection, we found several 
background words appear at the top ranked terms of most 
discovered topics due to their high frequency. For example, when 
we use image-caption pairs from online journal: ‘Breast Cancer 
Research’ as training data and learn topics using the CorrLDA 
model, we found ‘breast’, ‘cancer’, ‘mammary’ are among the 
top-tanked words of many topics. These words, which we named 
as ‘background words’, appear frequently in many topics and take 
the places of the topic-specific key words. It’s necessary to 
discover these ‘background words’ from the dataset, otherwise, 
the topic learning would be less effective.  
It should be note that during the caption indexing stage, we have 
removed the non-content-bearing stopwords according to the Van 
Rijsbergen's stopword lists [14] and the UMLS stopword list [15]. 
Obviously, the ‘background words’ do not belong to regular 
stopwords. As we have seen, these words carry some contextual 
information which is shared by most image captions in a 
biomedical journal. As such ‘background words’ turn to be 
different from one journal to another, it’s better to discover them 
automatically rather than manually specifying them for each 
journal. 
In [20], Newman et al. proposed the ‘SwitchLDA’ model, in 
which a switch variable is introduced to control the fraction of 
entities in topics. With similar consideration, we develop a 
hierarchical probabilistic model with background distribution 
(HPB model) to capture the background topic z0. In this model, an 
additional Binomial distribution λ (with a Beta prior of γ1 and γ2) 

1. For the dth (d=1…D) documents, sample ( )d Dirθ α∼  
2. For the tth (t=1…T) topic, sample ( )t Dirϕ β∼ , 

' ( ')t Dirϕ β∼  and  '' ( '')t Dirϕ β∼ . 

3. For each of the Nd words wi in document d: 
a) Sample a topic ( )i dz Mult θ∼  
b) Sample | ( )

ii i zw z Mult ϕ∼  

4. For each of the Nc
d concepts ci in document d: 

a) Sample a topic 
1

' ( ,..., )
dN

i w wy Uniform z z∼  

b) Sample 
'| ' ( ' )
ii i yc y Mult ϕ∼  

5. For each of the Md visual words vi in document d: 
a) Sample a topic 

1
'' ( ,..., )

dN
i w wy Uniform z z∼  

b) Sample 
''| '' ( '' )i i yv y Mult ϕ∼  



was incorporated to control the switch variable x (Fig. 3b), which 
decides whether a term should be drawn from a background topic 
z0 or a regular latent topic zi. 
It’s not clear whether the background words and concepts (Fig. 4) 
are related to certain image content, as image content may always 
be dramatically different from one to another. Therefore, in our 
research, we test this issue by present a variation of the HPB 
model. The generative process is as following: 

 
In the proposed model, λ is the Bernoulli parameter for switch 
variable x. In our experiment, we assume symmetric priors and set 

1 20.1, '  = '' 0.01, 0.5α β β β γ γ= = = = = . For clarity, we call 
the variation of HPB model (in gray color) as HPB2 model. In the 
HPB model, visual words has nothing to do with the background 
topic, while in HPB2 model, the presence of background topic z0 
in the caption words of document d is used to generate visual 
words, which results in direct correlation between visual words 
and the background topic. 

4. COLLAPSE GIBBS SAMPLING FOR 
PROPOSED MODELS   
The model estimation is achieved via the Collapse Gibbs 
Sampling procedure [3], which iteratively estimates the posterior 

probability conditioned on current entity-topic assignment and 
adopts a Monte Carlo process to determine the assignment of 
entity-topic in the next iteration. 
Some notations to be used in Collapse Gibbs Sampling are list as 
following: W accounts for the vocabulary size of indexed words 
in the testing dataset; NW denotes the total number of indexed 
words while W’, NW’ and W’’, NW’’ represent the vocabulary size 
and the total number of concepts and visual words, respectively.  
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ig. 4 Illustration of top-ranked words and concepts in 

background topic of online journal ‘Breast Cancer Research’ 

4.1 Sampling for the Extended CorrLDA 
Model 
Given the generative process in Section 3.1, our objective is to 
compute the word-topic posterior probability, which is: 

( | , , ) ( | , , ) ( | , )wi i i wip z j w p w z j p z j= ∝ = ⋅ =-i -wi -i -wi -i -wiw z w z w z
The above posterior is intractable, however, it can be 
approximated by integrating out (collapsing) all the latent 
variables 

jϕ  and 
dθ  separately, which is: 

( ) ,
,

,

( | , , ) ( | , , , ) ( | , )

                                  ( | , ) ~ ( )
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Therefore, posterior probability for current word
iw  is: 

, ,

, ,

( | , , )
wi d
i j i j

wi i d
i j i

n n
p z j w

W n T n
β α
β α

− −

− −

+ +
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+ +-i -wiw z i
i

     (1) 

In which 
,

wi
i jn−

 (-i denotes that current word
iw is removed) is the 

total number of times word
iw  being assigned to topic j except for 

1. For the dth (d=1…D) documents, sample ( )d Dirθ α∼  and 

1 2( , )d Betaλ γ γ∼  
2. For the tth (t=1…T) topic, sample ( )t Dirϕ β∼ , 

' ( ')t Dirϕ β∼  and '' ( '')t Dirϕ β∼ ; for background topic, 
sample 

2( )Dir βΩ ∼  and 
2' ( ')Dir βΩ ∼ . 

Variation (for HPB2 model): 
        For background topic, sample 

2'' ( '')Dir βΩ ∼  

3. For each of the Nd words wi in document d: 
a) Sample a switch ( )i dx Bernoulli λ∼  
b) If  xi = 0, sample 

0| ( )iw z Mult Ω∼  
c) If  xi = 1, sample a topic ( )i dz Mult θ∼  and sample 

| ( )
ii i zw z Mult ϕ∼  

4. For each of the Nc
d concepts ci in document d: 

a) Sample a topic 
1

' ( ,..., )
dN

i w wy Uniform z z∼  

b) If 
0'iy z= , sample | ' ( ')i ic y Mult Ω∼  

c) If '  ( 1... )i iy z i T= = , sample 
'| ' ( ' )
ii i yc y Mult ϕ∼  

5. For each of the Md visual words vi in document d: 
a) Sample a topic 

1
'' ( ,..., )

dN
i w wy Uniform z z∼  

b) If 
0''iy z= , repeat (a) 

c) If ''  ( 1... )i iy z i T= = , sample 
''| '' ( '' )
ii i yv y Mult ϕ∼  

Variation (for HPB2 model): 
a) Sample a topic 

1
'' ( ,..., )

dN
i w wy Uniform z z∼  

b) If 
0''iy z= , sample | '' ( '')i iv y Mult Ω∼  

c) If ''  ( 1... )i iy z i T= = , sample 
''| '' ( '' )
ii i yv y Mult ϕ∼  



current one,
,i jn−

i is the summation of 
,

wi
i jn−

 , and 
,

d
i jn−

 is the total 

number of words in document d assigned to topic j except for 
current word. 
Having obtained the word-topic posterior probability, the Monte 
Carlo process is then straightforward - it is similar to throwing 
dice (based on the posterior probability) to determine the topic 
assignment for current word

iw in the next iteration.  

Based on sampled topic variables for each word wi, the posterior 
probabilities for visual word-topic and concept-topic can be 
approximated in similar formations. For simplicity, we give their 
posterior probabilities in a uniform expression, which is: 

,

,

( | , , , , )
iw

j i j
i i

d i j

n n
p z j w v

N W n
β

β
β

−

−

+
= = ∝ ⋅

+-i -iz w z
�

i

�
�� � �� ��

     (2) 

In which 
jn  is the total number of words in document d assigned 

to topic j; Nd is the total number of words in document d; 
,

iw
i jn−
� is 

the total number of entities (concepts /visual words) assigned to 
topic j except for current entity: 

iw� . For concepts, we have 

'  and 'W W β β= =�� ; while for visual words, '', ''W W β β= =�� . 

4.2 Sampling for Proposed HPB Model 
Similar to the Gibbs sampling procedure in Section 4.1, we derive 
the sampling equation for proposed HPB model as follows, which 
allow for joint sampling of the topic variables and the switch 
variable x for each word

iw : 
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In which 0
,d iN −

and 1
,d iN −

 are the total number of words (except for 

current word
iw ) assigned to background topic and regular latent 

topics in document d. In equation (3),
,0

wi
in−

denotes the number of 

times word
iw  being assigned to background topic except for 

current one, while 
,0in−

i is the summation of 
,0

wi
in−

. In (4), 
,

wi
i jn−

 is 

the total number of times word
iw  being assigned to topic j except 

for current one,
,i jn−

i is the summation of 
,

wi
i jn−

 ,and 
,

d
i jn−

 is the 

total number of words in document d assigned to topic j except for 
current word. 
The sampling equations or concept and visual words have two 
different cases. For the HPB model, we have: 
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In which 0
dN and 1

dN  are the total number of words assigned to 

background topic and regular latent topics in document d. 
,

ic
i jn−

 is 

the total number of times concept
ic  being assigned to topic j 

except for current one, while 
,

iv
i jn−

 is the total number of times 

visual word 
iv  being assigned to topic j except for current one. 

For the variation of HPB model (i.e. the HPB2 model), we have 
a uniform expression of posterior probabilities for both concept 
and visual words: 
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The nomination in (8) and (9) is the same as that in (2). 

5. EXPERIMENTAL RESULTS   
In this section, we apply the proposed HPB model to topic 
learning and compare the performance of HPB model with that of 
the extended Correspondence LDA (Corr-LDA) model under the 
same biomedical image annotation scenario using cross-validation. 
For topic learning, we look into the average log-likelihood of two 
models and visualize the discovered latent themes. The 
performance of automatic image annotation is evaluated by 
perplexity and annotation accuracy.  

5.1 Data Collection and Settings  
The data used in our experiment is from the online journal ‘Breast 
Cancer Research’ in the publicly available PubMed Central 
database (http://www.pubmedcentral.nih.gov/). In this journal, all 
the research articles (in digital version) between year 2002 and 
2008 are downloaded and parsed. After that, a total of 2320 
image-caption pairs are extracted from the original biomedical 
literatures and makeup the dataset for experiment. As introduced 
in Section 2, words, visual words and ontology-based biomedical 
concepts are indexed from image-caption pairs. In total, we 
indexed 132,978   text tokens which belong to 4113 unique words, 
379,526 visual words from a vocabulary size of 1000, and 53,825 
concepts, with 1938 unique concepts appear. 
The original dataset is divided into 5 subsets with equal size. Of 
the 5 subsets, one subset (20%) is retained as the validation data 
for testing the model, and the remaining 4 subsets (80%) are used 
as training data. For image annotation evaluation, the cross-
validation process repeats 5 times, with each of the 5 subsets used 
once as the validation data. After that, we take the average results 
for evaluation.  

5.2 Topic Learning and Representation 
The topic learning process of the proposed probabilistic model is 
achieved by running the collapse Gibbs sampling process over 
training dataset until converge (basically, it takes less than 100 
iterations to converge in model estimation). When the topic model 
is estimated from the training dataset, we will be able to visualize 
the uncovered latent themes and tell the correlation among words, 
visual words and biomedical concepts. 
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(a) Likelihood comparison (after convergence)        b) Perplexity comparison        (c) Perplexity over the iterations (# of topics = 100) 

Fig. 5 The likelihood and perplexity comparison of the extend Corr-LDA model and the HPB model  

5.2.1 Likelihood Comparison 
Log-likelihood is a standard criterion for generative models. It 
can be calculated by integrating out the topic variables after the 
convergence of Gibbs sampling. Generally, the higher log-
likelihood the model assigned to the data, the better predictive 
power and generalization ability the model has. 
The average word likelihood of the extend Corr-LDA model and 
the HPB model is compared. The marginal likelihood p(w|z) of 
the extend Corr-LDA model can be calculated by integrating out 
latent variables φ: 
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The average word likelihood can be obtained by taking the 
logarithm of p(w|z) and averaging the resulting summation by W. 

For the HPB model, the marginal likelihood p(w|z) is: 
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The average word likelihood of the HPB2 model is the same as 
the HPB model. 
As illustrated in Fig. 5a, for both models, the likelihood increase 
as the number of topic increase, which means that a relatively 
larger topic numbers may potentially result in better modeling of 
testing data. However, it should be noted that there is a trade-off 
between topic numbers and convergence time of models. And, as 
we would see in Section 5.3, the increase of topic number does 
not always lead to the improvement of predictive results. 
In general, the log-likelihood of the extended Corr-LDA model 
and the HPB model are close, the difference between two models 
can be explained by the  introduction  of background topic in the 
HPB model.  

5.2.2 Illustration of Discovered Latent Themes 
One major objective of the proposed models is to uncover the 
latent topics from image-caption pairs and facilitate knowledge 
organization and understanding in online biomedical literatures. 

With this consideration, we visualize the discovered latent topics 
by providing the top-ranked words, top-ranked concepts (Fig. 4 
and 6) and most related images (Fig. 6, with probability under 
each image). For this example, the latent topics are learnt by the 
HPB model, in which the topic number is 125. 
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 Fig. 6 Illustration of discovered latent themes by HPB model 
As illustrated in Fig. 4, the background topic depicts the 
contextual information of the biomedical journal, such as breast 
cancer, human body and tumor. The regular latent topics, on the 
other hand, reveal some domain specific knowledge. As 



illustrated in Fig. 6, the top-ranked words, concepts and images of 
the uncovered latent topics have high semantic consistency. The 
top ranked words and concepts not only contain domain specific 
terms such as receptor, carcinomas, breast adenocarcinoma and 
Immunohistochemical, which help user to interpret the topics, but 
also provide many protein names and gene names that are related 
to the uncovered latent topic.  

5.3 Image Annotation and Evaluation 
The proposed probabilistic models are able to establish direct 
correlation among caption words, visual words and biomedical 
concept in biomedical image-caption pairs. Therefore, given the 
image content, a good model should be able to predict the missing 
captions. Next we automatically annotate caption words and 
concepts for images in the testing dataset based on the uncovered 
latent topics from training dataset, with both captions and 
concepts in testing dataset regarded as unknown (missing). The 
performance of automatic annotation is evaluated by perplexity 
and annotation accuracy using cross-validation.  

5.3.1 Perplexity Comparison 
In our experiment, we resort to the word caption perplexity as 
standard criteria of the annotation performance. 
The perplexity of a set of testing image-caption pairs (for all 

testd D∈ ) is defined as the exponential of the negative normalized 
predictive  log-likelihood using the training model, in which the 
topic-word conditional probability: ( | ) i wip w z t=  is obtained 
from the Gibbs sampling process of training dataset in Section 4. 
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With uncovered latent topics from training image-caption pairs, 
the estimation of prior probability of topic in a testing image can 
be approximated by running collapse Gibbs sampling over all the 
extracted visual words (no words or concepts used) in testing 
dataset (eq. 10) using fixed visual word-topic conditional 
probability ( | '' )i ip v y j=  (which is obtained from the Gibbs 
sampling process of training dataset in Section 4). 
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   (10) 

After the convergence of the Gibbs sampling process, the 
probability for the ‘missing’ caption words and concepts of an 
image can be calculated via the production of topic-word/concept 
conditional probability and the prior probability for each topic. 

Recall that for HPB model, we assume no background topic for 
visual words, the prior for background topic in a document is 
approximated by average probability over the training dataset.  
Fig. 5b represents the perplexity of CorrLDA and HPB model 
over different topic numbers. The perplexity of HPB model is 
lower than that of the CorrLDA model, which indicates that HPB 
model generated from training data set is 'less surprised' by the 
testing data, thus, it demonstrates better ability in annotation. 
What’s more, as the topic number increases, the perplexities of 
both models decrease first, and then increase, with 100 topics 
have the lowest perplexity. It appears that the increase of topic 
number does not always lead to persistent improvement of 
predictive ability.  
Fig. 5c illustrates the perplexities over the iterations when the 
topic number is 100. Although the HPB model appears to be more 
sophisticated than the Corr-LDA model, they converged in similar 
number of iterations. Recall that we have a variation of HPB 
model (named as the HPB2 model), which assumes that 
background words and concepts are related to certain image 
content (visual words). As in Fig. 5c, the perplexity of HPB2 
increases sharply and quickly exceeds 10000, which indicates that 
the Gibbs sampling process for this model fails to converge. 
Finally, over 90% of the entities in documents are assigned to the 
background topic (as a comparison, only about 1/10 of the words 
will be assigned to background topic when the Gibbs sampling 
process of HPB model converges). According to the perplexity 
results, there is no evidence that there exist a direct correlation 
between image content and background information in the caption. 

5.3.2 Annotation Accuracy Comparison 
When the prior probability of topics in a testing image is 
estimated (eq. 10), the word and caption annotation for each 
document can be achieved by ranking words and concepts with 
regard to the following probability. 
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     (11) 

The words and concepts that achieve highest probability value in 
(11) are used as the annotation of images.  After that, the image 
annotations are compared to the original words and concepts in 
testing image-caption pairs for validation. During annotation 
evaluation, the cross-validation process repeats 5 times, and the 
results are averaged to produce the final annotation accuracy. 
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(a) Word annotation accuracy comparison                                             (b) concept annotation accuracy comparison  

Fig. 7 Annotation accuracy comparison over different topic numbers 
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Fig. 8 Image annotation comparison 

The accuracy of word and concepts annotation over different 
topic numbers is illustrated in Fig. 7. Specifically, Fig. 7a 
represents the annotation accuracy from top 5 annotation words to 
top 30, while Fig. 7b provides the annotation accuracy from top 5 
concepts to top 20. According to the experiment results, the HPB 
achieves best annotation performance when topic number is 150, 
while the Corr-LDA model achieves best performance with 100 
topics. As the topic number increases, the annotation accuracy of 
both models increase first, and then decrease, which is consistent 
with the results in perplexity comparison. 
The annotation accuracy of extended Corr-LDA model and the 
proposed HPB model is compared using their best annotation 
performance (i.e. 100 topics for Corr-LDA model, and 125 topics 
for HPB model). As illustrated in Fig. 8, the HPB model is 
consistently better than the extended Corr-LDA model in both 
word annotation and concept annotation tasks, which is consistent 
with the perplexity comparison results in Section 5.3.1. What’s 
more, according to Fig. 7 and Fig. 8, the performance of HPB 
model drop slower than the Corr-LDA model when considering 
the annotation accuracy of large number of annotation terms, 
which indicates that HPB model is more robust and is able to 
achieve better performance in annotating less frequent terms 

6. CONCLUSION AND FUTURE WORK 
The contribution of this paper is twofold. First, we proposed a 
novel HPB model to integrate background information in topic 
learning, incorporating contextual information to interpret the 
uncovered latent topic and improve the image annotation 
accuracy. Second, in our experiments, we discovered that there is 
no direct correlation between image content and the background 
information in the captions. In other word, the extracted visual 
words from images have nothing to do with the background topic. 
It is unnecessary to incorporate contextual information when 
modeling the image contents.  
For future work, we plan to incorporate other kinds of knowledge 
(such as protein entities, gene names and concept relations) in our 
model to enrich the discovered latent semantic topics and 
facilitate knowledge organization and understanding in online 
biomedical literatures. 
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