
On Finding the Point Where There Is No Return:
Turning Point Mining on Game Data

Wei Gong∗ Ee-Peng Lim∗ Feida Zhu∗ Palakorn Achananuparp∗ David Lo∗

Abstract
Gaming expertise is usually accumulated through playing
or watching many game instances, and identifying critical
moments in these game instances called turning points.
Turning point rules (shorten as TPRs) are game patterns
that almost always lead to some irreversible outcomes. In
this paper, we formulate the notion of irreversible outcome
property which can be combined with pattern mining so as to
automatically extract TPRs from any given game datasets.
We specifically extend the well-known PrefixSpan sequence
mining algorithm by incorporating the irreversible outcome
property. To show the usefulness of TPRs, we apply them
to Tetris, a popular game. We mine TPRs from Tetris
games and generate challenging game sequences so as to
help training an intelligent Tetris algorithm. Our experiment
results show that 1) TPRs can be found from historical game
data automatically with reasonable scalability, 2) our TPRs
are able to help Tetris algorithm perform better when it is
trained with challenging game sequences.

1 Introduction
Motivation. In competitive games, there are critical
moments or patterns that matter most in deciding the
game outcomes. We call these patterns the turning
points. According to The Free Dictionary1, turning
point is defined as “the point at which a very significant
change occurs; a decisive moment”. In the gaming
context, we define turning point rule (TPR) to be some
pattern in the game that almost always leads to some
irreversible outcomes. That is, once this pattern is
observed in the game moves, no future game moves will
be able to change the outcome. The outcomes, in the
extreme case, are completely irreversible and these are
likely to be well-known among the experienced players.
What are more interesting are those outcomes that are
irreversible with high probabilities (or confidence) as
they may be less known to players. We call all these
the irreversible outcomes.

TPRs are useful in many ways. They can be used
to explain game outcomes and to analyze games. They
give deeper insights into the game dynamics and provide
game strategies that can guide players in choosing

∗School of Information System, Singapore Manage-
ment University. (email: wei.gong.2011@smu.edu.sg,
eplim@smu.edu.sg, fdzhu@smu.edu.sg, palakorna@smu.edu.sg,
davidlo@smu.edu.sg)

1http://www.thefreedictionary.com

correct actions to reach their desired outcomes. They
can even be used to train a game algorithm.
Objectives. Despite the usefulness of turning points
in gaming, there is a lack of systematic study on
deriving such knowledge. In this research, we develop
TPR definition by introducing the new irreversible
outcome property to predictive rules. Like other types of
predictive rules, TPR also needs to be frequent (i.e., its
support is greater than or equal to a minimum support)
and distinctive (i.e., its confidence is greater than or
equal to a minimum confidence) in at least one outcome
[11, 9, 10, 15, 16, 8].

To illustrate the irreversible outcome property, con-
sider the simple game dataset in Table 1 in which each
row is a game sequence. A,B, . . . , F denote game events
while W and L (of some player) denote two different
outcomes of win and lose respectively. The events en-
closed in brackets occur at the same time step. With a
minimum support of 2 and minimum confidence of 0.6,
rule (A)⇒W will be identified as a predictive rule with
its support = 6 and confidence = 0.67. However, we do
not regard event A as a turning point because, A fol-
lowed by E reverses the outcome from W to L. The rule
(A)(E) ⇒ L, however suggests a turning point as the
outcome L cannot be reversed with new event(s) after
A and E.

The above rule (A)(E) ⇒ L represents a turning
point of completely irreversible outcome as its confi-
dence is 1.0. If a rule has an irreversible outcome with
very high but smaller than 1.0 confidence, we would like
to ensure that the rule extended with new event(s) does
not generate a different outcome with high confidence.
This is an important criteria that should be considered
in the irreversible outcome property of TPR.

Table 1: A game dataset.

ID Game Outcome
1 (A)(C)(D) W

2 (A)(C)(C) W

3 (A)(A)(D) W

4 (A)(C)(F) W

5 (A)(B)(E,F) L

6 (B)(A)(E)(F) L

In this work, other than the patterns with ordered
events, we are also interested in patterns with non-
ordered events, namely conjunctive patterns. Conjunc-
tive pattern involves two or more events appearing in
a game but not in any specific order. In Table 1,
A∧B ⇒ L is one of such patterns with very high confi-
dence (=1). We will consider both ordered and conjunc-
tive events in our definition of TPR. This however does
not prevent us from adding irreversible outcome prop-
erty to other kinds of predictive rules creating other
forms of TPRs. We shall leave this to our future work.

In this paper, our objective is to formalize turning
points and define at least one useful form of turning
point rule (TPRs). We have developed an algorithm,
called TPRMiner, which mines TPRs from game
datasets by incorporating specific TPR properties. We
also explored how to improve game algorithms using
TPRs.

The main contributions of this paper are summa-
rized as follows.

1. We propose the concept of TPR to find game
patterns of high predictability of certain irreversible
outcome. Our TPR definition is based on modeling
games as event sequences and outcomes. To the
best of our knowledge, this is the first time turning
point, a general concept, is formally defined using
sequence patterns.

2. We develop a novel algorithm TPRMiner to mine
TPRs by incorporating useful properties of TPR
into the sequential pattern mining algorithm. We
show that TPRMiner is scalable using synthetic
data generated with different parameter settings.

3. We perform mining on Tic-Tac-Toe games to il-
lustrate the capabilities of TPRMiner to extract
interesting and useful TPRs. The support and con-
fidence associated with TPRs allow us to determine
the likelihood of applying TPRs and the likelihood
of obtaining the associated outcome respectively.

4. We further illustrate that TPRs can help to train
Tetris algorithm making it more effective in han-
dling critical moments in the game.

While we focus on games in our definition of TPR,
this work is clearly applicable to many other application
settings including fault diagnosis where each sequence
represents a series of events that lead to faulty or non-
faulty outcome, churn analysis where each sequence
represents a series of events a customer experiences
that lead to his churn or non-churn, and others. The
irreversible outcome property can also be applied to
different types of predictive rules making it widely
useful.

X

Step 1

X

Step 2

O X

Step 3

O
X

X

Step 4

O
X

O

X

Step 5

O
X

O
X

X

Step 6

O
X

O
X
O

X

Step 7

O
X

O
X
O

X

Figure 1: A Tic-Tac-Toe game.

Table 2: A game dataset DTTT .

ID Game OC
S1 (X1)(O4)(X5)(O9)(X3)(O7)(X2) XW

S2 (X1)(O4)(X2)(O3)(X8)(O5)(X6)(O7) XNW

S3 (X1)(O4)(X2)(O3)(X5)(O9)(X8) XW

S4 (X2)(O1)(X5)(O8)(X7)(O3)(X4)(O6)(X9) XNW

Paper Outline. The outline of this paper is as follows.
Section 2 defines TPR. Section 3 introduces the TPR
mining algorithm TPRMiner. Sections 4 shows some
interesting TPRs discovered from Tic-Tac-Toe games.
Section 5 describes the application of TPR in Tetris, and
presents our experimental results on this application.
Section 6 shows the scalability of TPRMiner. Section
7 concludes our paper.

2 Turning Point Rule
We define a game S to be an ordered list of steps,
i.e., S = s1s2 . . . sT . Each step st (1 ≤ t ≤ T)
consists of a set of events from an event set E, i.e.,
st ⊆ E, such that these events occur at a time point
t. We require the event set E to be discrete and finite.
This requirement can be met by discretizing events that
are continuous and considering only a subset of the
infinite event space. Each completed game S produces
an outcome oc and oc is one of all possible outcomes
denoted by OC. A game dataset D is represented by a
set of games, i.e., D = {(Si, oci)}ni=1. In this work, we
consider games with two possible outcomes (win or not
win), i.e., OC = {oc, oc}, since this is the most common
case in games.

In the following, we shall use Tic-Tac-Toe (TTT)
in our examples for TPR. Figure 1 represents a TTT
game. The game involves two players X and O marking
a 3 by 3 grid board alternately. Without loss of
generality, we assume that X always goes first. A
player wins the game when three of his/her marked
entries form a line. The outcome set is therefore
{X_win(XW), X_not_win(XNW)}. We number the
nine grid entries uniquely from 1 to 9 starting from
the top left cell and enumerating the remaining cells
in the row before those in the next row. When X
marks an entry k, we denote that by an event Xk. The
TTT game shown in Figure 1 can be represented as
S = (X7)(O8)(X5)(O3)(X4)(O1)(X6) with outcome=
XW . Table 2 depicts a set of four TTT games, DTTT .

Our task is to mine TPRs from game dataset. Each

rule involves a pattern and a corresponding outcome.
We define three types of patterns, namely simple pat-
tern, conjunctive pattern and ordered pattern.

2.1 Pattern A simple pattern contains only one
event e ∈ E. Given a game S = s1 . . . sT , the set of
instances of e in S is I(e, S) = {t|e ∈ st, 1 ≤ t ≤ T}. S
is said to satisfy e, if |I(e, S)| > 0, meaning that there is
at least one instance of e in S. The support of e in a game
dataset D refers to the number of games in D satisfying
e, i.e., sup(e,D) = |{Si|Si satisfies e, (Si, oci) ∈ D}|.
Example 1. Consider dataset DTTT in Table 2, There
are three games (S1, S2 and S3) satisfying a simple
pattern X1. Hence, sup(X1, DTTT) = 3.

A conjunctive pattern is a conjunction of simple
patterns and is denoted as pc = e1∧e2∧ . . .∧em, where
e1, e2, . . . , em are different simple patterns. The length
of pc, |pc|, is m. If |pc| = 1, then pc is equivalent to a
simple pattern. A game S is said to satisfy a conjunctive
pattern pc, if ∀k, 1 ≤ k ≤ |pc|, S satisfies ek. Note that
the simple patterns in pc can appear in a game S in any
order. The support of pc in D, i.e., sup(pc, D), is |{Si|Si

satisfies pc, (Si, oci) ∈ D}|. The set of instances of pc
in S, I(pc, S), is {〈t1, t2, . . . , t|pc|〉|tk ∈ I(ek, S), 1 ≤ k ≤
|pc|}.

A conjunctive pattern pc = e1 ∧ e2 ∧ . . . ∧ en
is a sub-pattern of another conjunctive pattern p′c =
e′1 ∧ e′2 ∧ . . . ∧ e′m, denoted as pc v p′c, if there exists
integers 0 ≤ k1, k2, . . . , kn ≤ m, such that e1 = e′k1

, e2 =
e′k2

, . . . , en = e′kn
.

Example 2. In DTTT , two games (S3 and S4) satisfy
a conjunctive pattern X5∧O3. Since X5 and O3 occur
at step 5 and step 4 respectively in S3, and occur at step
3 and step 6 respectively in S4. A conjunctive pattern
X1 ∧O4 is a sub-pattern of X1 ∧O4 ∧X3.

To also consider the order among events, we define
ordered pattern which is a set of conjunctive patterns
connected by ≺, and is denoted by po = pc1 ≺ pc2 ≺ . . . ≺
pcm, where pcj ’s (1 ≤ j ≤ m) are conjunctive patterns.
pcl ≺ pcr means that the events satisfying the left
conjunctive pattern pcl occur before the events satisfying
pcr. The length of po, |po|, is |pc1| + |pc2| + . . . + |pcm|. If
|po| = 1, then po is equivalent to a simple pattern.

S is said to satisfy an ordered pattern po = pc1 ≺
pc2 ≺ . . . ≺ pcm, if ∀k, 1 ≤ k ≤ m, S satisfies pck, and
∃I1, I2, . . . , Im, I1 ∈ I(pc1, S), I2 ∈ I(pc2, S), . . . , Im ∈
I(pcm, S), such that ∀t1 ∈ I1,∀t2 ∈ I2, . . . ,∀tm ∈
Im, t1 < t2 < . . . < tm. The support of po in dataset D,
i.e., sup(po, D), is |{Si|Si satisfies po, (Si, oci) ∈ D}|.

An ordered pattern po = pc1 ≺ pc2 ≺ . . .≺pcm is
a sub-pattern of another ordered pattern p′o = p′c1 ≺
p′c2 ≺ . . . ≺ p′cn , denoted as po v p′o, if there exists
integers 1 ≤ k1 < k2 < . . . < km ≤ n, such that

pc1 v p′ck1
, pc2 v p′ck2

, . . . , pcm v p′ckm
.

Example 3. In DTTT , there is only one game (S1)
satisfying an ordered pattern po1 = X1 ∧ X5 ≺ X2.
Hence, sup(po1, DTTT) = 1. po1 is a sub-pattern of
po2 = X1 ∧O4 ∧X5 ≺ X2 ∧O7.

A pattern p is a simple pattern, a conjunctive
pattern, or an ordered pattern. We denote the pattern
p using a general form, i.e., p = pc1 ≺ pc2 ≺ . . .≺pcm.

2.2 Turning Point Rule A rule R is denoted as
p⇒ oc, where p is a pattern and oc is an outcome from
the outcome set OC. A rule R = (p⇒ oc) is a sub-rule
of another rule R′ = (p′ ⇒ oc′), if oc = oc′, and p v p′.
The support of R in a game dataset D is the number of
games in D satisfying p. Hence, sup(R,D) = sup(p,D).
The confidence of R in D is the fraction of games in
D satisfying p and are assigned the outcome oc, i.e.,
conf (R,D) = sup(p,D(oc))

sup(p,D) , where D(oc) is the subset of
games in D with outcome oc.

A rule is said to be frequent if its support is greater
than or equal to a minimum support min_sup. A rule
is said to be distinctive if its confidence is not smaller
than a minimum confidence min_conf . A rule is strong
if it is frequent and distinctive.

Given a game dataset D, user-specified min_sup
and min_conf , a turning point rule (TPR) is a
rule R = (p ⇒ oc) which meets the following two
criteria: (a) R is strong; and (b) the outcome oc is
hard to be changed even with additional subsequent
event(s). That is, there does not exist another rule
R′ = (p ≺ p′ ⇒ oc) with some pattern p′ such that R′

is frequent, and the confidence of R′ is greater than or
equal to a reverse outcome confidence rev_conf where
rev_conf ≤ min_conf . This means any rule that is
extended using ≺ from a TPR has very low probability
(i.e., < rev_conf) to lead to a different outcome.

The constraint (a) ensures the rule R can predict
the outcome with high probability. The constraint
(b) ensures that there is very low likelihood in the
subsequent change of outcome. We also call this the
irreversible outcome property, which is unique for
turning point rule. In the extreme case, min_conf
and rev_conf can be set to 1 and 0 respectively. This
suggests the TPR R = (p⇒ oc) guarantees the outcome
oc with full confidence and there is no extension of p
that gives arise to an opposite outcome and meets the
rev_conf criteria.
Example 4. Given DTTT and suppose that
min_sup = 2, min_conf = 0.65 and rev_conf = 0.4,
the rule R1 = (X1 ≺ O4 ⇒ XW) is strong with
support = 3 and confidence = 0.67, but it is not a
TPR. This is because there is a rule R′1 = (X1 ≺ O4 ≺
O3 ⇒ XNW) extended from R1 that has support = 2

and confidence = 0.5 > rev_conf . Another rule
R2 = (X1 ≺ O4 ≺ X2 ∧ X5 ⇒ XW) is a TPR and
it has support = 2 and confidence = 1.

3 Turning Point Rule Mining
3.1 Overview We aim to develop a TPR mining
algorithm based on those for mining frequent subse-
quences [13, 6, 7] and to incorporate the irreversible
outcome property. We choose to extend PrefixSpan [12],
an algorithm known to run efficiently on large sequence
data. As TPR involves both set oriented (i.e., conjunc-
tive) and sequence oriented (i.e., ordered) patterns, we
show that PrefixSpan algorithm fails to mine frequent
patterns for deriving TPRs. We therefore extend Pre-
fixSpan to solve the TPR mining problem.

First, we need to prove our frequent pattern satisfy
Apriori property which states that “If a pattern is
frequent in a dataset D, then all its sub-patterns are
also frequent in D” 2. Using Apriori property, we can
iteratively find frequent patterns with length from 1 to
k, where k is the longest frequent pattern that can be
found inD. For example, length-2 frequent patterns can
be grown from length-1 frequent patterns, i.e., simple
patterns. Length-3 frequent patterns can be grown from
length-2 frequent patterns, and so on.
PrefixSpan approach. If we treat each pattern as a
subsequence, we can use PrefixSpan to derive a length-
l + 1 pattern by adding a frequent simple pattern to a
length-l frequent pattern, which is known as the prefix
pattern.

Given an input game S which satisfies a frequent
pattern p, the remaining part of S after removing the
steps which appear together or before the first occur-
rence of p in S is called the projected game w.r.t. p in
S. For example, the projected game of a prefix pattern
X1 ≺ X5 for S1 is 〈S1 = (O9)(X3)(O7)(X2), XW 〉.
The set of projected games in D w.r.t. a prefix pattern
p is called the projected database w.r.t. p in D. For ex-
ample, given DTTT , the projected database ofX1 ≺ X5
(denoted by X1 ≺ X5-projected DB) is:
{〈S1 = (O9)(X3)(O7)(X2), XW 〉,
〈S3 = (O9)(X8), XW 〉}.

Projected tagged database. As PrefixSpan consid-
ers only frequent subsequences, it cannot find all fre-
quent TPR patterns with a combination of conjunctive
and ordered patterns. What we want is to grow a prefix
pattern p by both appending it with a simple pattern
using ≺, and assembling it with a simple pattern using
∧. To grow the frequent pattern by appending, we use
Property 1.

2Proofs of properties (including following Properties 1 and 2)
are given in our supplementary material.

Property 1. Suppose a pattern p = pc1 ≺ . . . ≺ pcm
is frequent. If pcm+1 is frequent in the p-projected DB,
then p ≺ pcm+1 is frequent.

However, growing p = pc1 ≺ . . . ≺ pcm by assembling
is not possible using the p-projected DB as the latter
does not contain steps that appear together or before
the first occurrence of pcm.
Example 5. Consider a pattern p1 = O4 ≺ X2. The
projected DB of p1 in DTTT is:
{〈S1 =, XW 〉,
〈S2 = (O3)(X8)(O5)(X6)(O7), XNW 〉,
〈S3 = (O3)(X5)(O9)(X8), XW 〉}.
The projected game of p1 for S1 is empty since

X2 appears in the last step of S1. Simple pattern O9
has support of 1 in O4 ≺ X2-projected DB. Suppose
min_sup = 2, then O4 ≺ X2 ∧ O9 is not a frequent
pattern. However, one can check that in the original
dataset O4 ≺ X2 ∧ O9 has support of 2 (S1 and S3

satisfy it) and therefore is a frequent pattern. Thus,
the projected database does not correctly grow a frequent
pattern by assembling.

Therefore, PrefixSpan fails to mine frequent TPR
patterns. To address this problem, we define a new
projected tagged database. Given an input game S
which satisfies a prefix pattern pc1 ≺ . . . ≺ pcm, we first
remove the steps that appear together or before the first
occurrence of pc1 ≺ pc2 . . . ≺ pcm−1 in S, and insert a
tag @ after the first occurrence of pcm in the remaining
part of S. The output is pc1 ≺ pc2 . . . ≺ pcm-projected
tagged game. Note that p-projected DB can be derived
from p-projected tagged DB by ignoring steps before
@s. Hence, a separate p-project DB is not required to
grow frequent patterns by appending.
Example 6. Consider the same pattern p1 = O4 ≺ X2
as in Example 5. The projected tagged DB of p1 in
DTTT is:
{〈S1 = (X5)(O9)(X3)(O7)(X2)@, XW 〉,
〈S2 = (X2)@(O3)(X8)(O5)(X6)(O7), XNW 〉,
〈S3 = (X2)@(O3)(X5)(O9)(X8), XW 〉}.
Instead of having support of 1 in O4 ≺ X2-projected

DB, O9 has support of 2 in O4 ≺ X2-projected tagged
DB. With min_sup = 2, frequent pattern O4 ≺ X2∧O9
then can be grown from O4 ≺ X2 using the projected
tagged database.
Property 2. Suppose a pattern pc1 ≺ . . . ≺ pcm is
frequent in D. If a simple pattern ei is frequent in
pc1 ≺ . . . ≺ pcm-projected DB, then pc1 ≺ . . . ≺ pcm ≺ ei
is frequent in D. If ej is frequent in pc1 ≺ . . . ≺ pcm-
projected tagged DB, where ej 6∈ pcm, then pc1 ≺ . . . ≺
pcm ∧ ej is frequent in D.

3.2 Algorithm that finds TPRs Based on the
above analysis, we develop the TPR mining algorithm

Algorithm 1 TPRMiner
input: min_sup, min_conf , rev_conf , game dataset D with
two different outcomes oc and oc

output: R = set of TPRs with outcome oc
procedure TPRMiner(min_sup, min_conf , rev_conf , D)

F = ∅
FindTPRs(min_sup, min_conf , rev_conf , ‘’, D, F)
R = patterns in F labeled as TPR candidates
return R

end procedure
Sub-function FindTPRs
1: parameters: min_sup, min_conf , rev_conf , frequent

pattern p, p-projected tagged DB in D Dtag |p, set of frequent
patterns F

2: procedure FindTPRs(min_sup, min_conf , rev_conf , p,
Dtag |p, F)

3: scan Dtag |p to get assembling set pas and appending set
pap

4: foreach ei ∈ pas
5: p′ = p ∧ ei
6: add p′ to F

7: if sup(p′,Dtag|p(oc))
sup(p′,Dtag|p)

≥ min_conf

8: label p′ as a TPR candidate

9: if sup(p′,Dtag|p(oc))
sup(p′,Dtag|p)

≥ rev_conf

10: RemoveTPRCandidates(p′)
11: FindTPRs(min_sup, min_conf , rev_conf ,

p′, Dtag |p′ , F)
12: foreach ej ∈ pap
13: p′′ = p ≺ ej
14: add p′′ to F

15: if sup(p′′,Dtag|p(oc))
sup(p′′,Dtag|p)

≥ min_conf

16: label p′′ as a TPR candidate

17: if sup(p′′,Dtag|p(oc))
sup(p′′,Dtag|p)

≥ rev_conf

18: RemoveTPRCandidates(p′′)
19: FindTPRs(min_sup, min_conf , rev_conf ,

p′′, Dtag |p′′ , F)
20: end procedure

called TPRMiner. In this algorithm, we find the
complete set of TPRs with outcome oc. Let the p-
projected tagged DB in D be denoted as Dtag|p. As
shown in Algorithm 1, we mine the frequent patterns
from D from length-1 to the longest frequent patterns
we can find. When we scan the projected tagged DB’s,
we derive two sets of local frequent simple patterns,
namely assembling set and appending set (line 3). They
contain frequent simple patterns in the projected tagged
DB and projected DB respectively. For each simple
pattern ei in the assembling set, we can get a new
frequent pattern p′ = p∧ ei (lines 4 to 6). Similarly, for
each simple pattern ej in the appending set, we obtain
p′′ = p ≺ ej (lines 12 to 14). For each new frequent
pattern pnew ∈ {p′, p′′}, we perform strong rule checking
and irreversible outcome property checking.
Strong rule checking (lines 7-8 and lines 15-16).
We check whether pnew ⇒ oc is strong. If it is strong,
we label this rule as a TPR candidate.

Irreversible outcome property checking (lines 9-
10 and lines 17-18). For any rule p ⇒ oc with
confidence larger than rev_conf , we find all strong
rules (i.e., TPR candidates) with patterns that can
be extended to p using ≺ and with oc outcome. We
remove such strong rules from TPR candidates. Since
we perform irreversible outcome property checking on
all the frequent patterns, the remaining TPR candidates
are the final set of TPRs.

3.3 Pruning Method. The above method of mining
TPRs uses post-pruning technique. That is, we need to
mine all the frequent patterns to obtain the complete
set of TPRs. One problem of this method is that
mining the complete set of frequent patterns is very
time consuming, and the number of frequent patterns
can be huge, but only a few of them are finally selected
as TPRs. If we can find all the TPRs without mining all
the frequent rules first, the efficiency of our algorithm
will be improved. Therefore, we examine the following
pruning method that can stop growing some frequent
patterns early while not affecting the completeness of
the mining algorithm.
Theorem 1 (Low-Support pruning) Suppose we
aim to find all the TPRs with outcome oc. Let p be
a frequent pattern in D. If sup(p,D(oc)) < min_sup ·
min_conf and sup(p,D(oc)) < min_sup · rev_conf ,
then we can safely stop growing p.
Proof. Let p′ be a pattern that is grown from
p. We assume R′ = (p′ ⇒ oc) is strong,
then sup(p′,D(oc))

sup(p′,D) ≥ min_conf and sup(p′, D) ≥
min_sup. Hence, sup(p′, D(oc)) ≥ min_sup ·
min_conf . Because sup(p,D(oc)) ≥ sup(p′, D(oc)), we
have sup(p,D(oc)) ≥ min_sup ·min_conf , which con-
tradicts sup(p,D(oc)) < min_sup ·min_conf . There-
fore, any rule grown from p is not strong with outcome
oc. Similarly, if sup(p,D(oc)) < min_sup · rev_conf ,
then any rule p′ ⇒ oc grown from p does not have confi-
dence larger than rec_conf . Hence, if sup(p,D(oc)) <
min_sup · min_conf and sup(p,D(oc)) < min_sup ·
rev_conf , then (1) no strong rule (and also no TPR)
with outcome oc can be grown from p; and (2) rules with
outcome oc grown from p have lower confidence than
rev_conf , so they will not be useful in irreversible out-
come property checking. Thus we can safely stop grow-
ing p.

4 TPR examples from Tic-Tac-Toe (TTT)
Games

In this section, TTT is used to illustrate TPRs mined
from games. TTT is chosen because it is popular yet
simple enough to understand TPRs and their charac-

teristics. To learn TPRs from TTT games, we gener-
ated a dataset containing 10,000 games synthetically by
making use of a well-known heuristic strategies of TTT
[3] to simulate players playing the games. TPRs were
learned from this dataset. Due to the page limit, we
refer interested readers to our supplementary material
on generation of TTT Games.
Examples. The following TPRs are mined by setting
min_sup as 30, min_conf as 0.7 and rev_conf as 0.3.
R1 = (X1 ∧ O3 ∧ O7 ≺ O9 ⇒ XW) is a TPR with
support = 190 and confidence = 1. If we observe this
pattern in a game before it ends, player X will win the
game with 100% probability, and no subsequent events
can change the outcome. Figure 2 is an example game
that satisfies R1.

X X O X O
X

X

O
X

O
X
O

X
OX

O O
X
O

X
X

O O
X
O

X
X

X

Figure 2: Example game (X1)(O3)(X4)(O7)(X5)(O9)(X6).

R2 = (X1 ≺ O8 ≺ X5 ≺ O9 ⇒ XW) is also a
TPR mined from TTT games with support = 44 and
confidence = 0.7. If X1 ≺ O8 ≺ X5 ≺ O9 appears in
a game, there is 70% probability that X will win the
game, and the probability of outcome reverse is capped
by reverse outcome confidence (0.3). Figure 3 shows an
example game involving R2.

X X

O

X

O
X

X

O
X
O OX

X
O

X

X O
X
O

O
X

O O
XO

X

X X

Figure 3: Example game (X1)(O8)(X5)(O9)(X7)(O4)(X3).

Here is an interesting example that shows why
reverse outcome confidence is useful for TPRs. R3 =
(X1 ∧ O3 ∧ O7 ∧ O9 ⇒ XW) is a strong rule with
support = 239 and confidence = 0.86. However, R3

is not a TPR, since there exists another rule R4 =
(X1 ∧ O3 ∧ O7 ∧ O9 ≺ X5 ⇒ XNW) which has
support = 43 and confidence = 0.78 for X not winning.
This means there is a high likelihood that the outcome
will be reversed by event X5, although R3 has a quite
high confidence. Figure 4 shows an example game that
satisfies R3 and R4’s patterns and X loses the game.

X X

O

X

O
X

X

O
X

O
X
O X O

X

O OX

O
X
X

O O
X
O

X
X

X O O
X
O

X
X

X
O

Figure 4: Example game (X1)(O9)(X4)(O7)(X8)(O3)(X5)(O6).

5 TPR Application on Tetris
In this section, we describe a way of applying TPR to
enhance game algorithm of Tetris. Tetris has attracted

O S L T I Z J

Figure 5: The seven distinct pieces in Tetris. Each piece contains four
blocks.

much research [5, 4, 2, 14] because of its popularity and
challenging nature. The standard version of Tetris has
a 10 by 20 board size and seven distinct pieces (called
tetrominoes). Each piece is represented by a letter as
shown in Figure 5. One after another, randomly selected
pieces are dropped from the top of the board at a
speed proportional to the difficulty level of the game.
Players can move and rotate each piece until it hits an
obstruction. The position of this piece is then fixed.
When a row of blocks is filled entirely, it is removed,
and the blocks above the removed row are shifted down.
The game is over if any stack of blocks reaches the top
of the board.

For each falling piece, a typical Tetris algorithm
(shorten as Tal) simulates all possible final positions
(i.e., combinations of different final locations and rota-
tions), evaluates the utility of each final position, moves
and rotates the piece accordingly. The better the Tal
is, the longer it can survive. In this section, we apply
TPR to train a Tal. Our goal is to train a known Tal
to be able to handle more challenging piece combina-
tions that are to be properly rotated and placed on the
game board so as to keep the game going. Therefore, in
Tetris, we define TPRs as a series of falling pieces that
can lead to ending the game quickly. In other words,
TPR represents a challenging series of falling pieces (or
events) which ends the game almost irreversibly.

In this section, we first present a way to mine TPRs
from Tetris games. Next, we propose a method to use
the mined TPRs to train a genetic algorithm (GA)-
based Tal. Finally, we present the experiment which
shows our method is able to help GA in training a much
stronger Tal.

5.1 Mining TPRs from Tetris Games In Tetris,
we are interested in the TPRs associated with the
falling pieces of the game instead of players’ actions.
Therefore, in a Tetris game S = s1s2 . . . sT , each step
st (1 ≤ t ≤ T) contains one event, which is one of the
seven distinct pieces. Thus a Tetris game is actually
a sequence of falling pieces that drop from the top of
the board. The game ends when there are T pieces
have been placed into the board. We therefore use T
as the score of the game. A sequence of falling pieces
S′ = sisi+1 . . . si+k−1 is a k-subseries of a Tetris game
S = s1s2 . . . sT , if 1 ≤ i ≤ T − k + 1.

To obtain the challenging series of falling pieces,
we mine TPRs from the Tetris games that contain

h

A dangerous point

i+qi i+k-1

20

M
ax

im
um

 h
ei

gh
t

Number of pieces

A dangerous subseries

Figure 6: An example of a dangerous subsereis in a Tetris game. X-
axis represents the number of pieces that have been placed in the
board. Y-axis represents the maximum height of the blocks in the
board. For each dangerous point (i.e. maximum height is larger than
h), we can identify a dangerous subseries.

the challenging series of falling pieces. Consider the
following situation: when the stack of the blocks on
the board reaches a certain height (say, more than 13),
the game state becomes very dangerous and placing
the subsequent falling pieces becomes very critical. If
poorly placed, the pieces will stack up ending the game
quickly. On the other hand, if the subsequent pieces
are placed appropriately, they may help to clear some
rows in the board and the game will last longer. In
other words, the dangerous subseries in the game are
situations where the player has to deploy good game
tactics. It is thus reasonable for our TPRs to be mined
from these subseries.

Let h be the height threshold of block stack that
is considered dangerous. We define a dangerous k-
subseries S′ = sisi+1 . . . si+k−1 to be a k-subseries in
a Tetris game S = s1s2 . . . sT , such that: (a) the
height of the blocks is less than h from time i to
i + q − 1 where q < k, and (b) the height of block
stack reaches or exceeds h at time i + q. Figure 6
shows an example of dangerous subseries. Given a
Tetris game S = s1s2 . . . sT , k, q, and h, we extract
a set of dangerous k-subseries in temporal order, with
the last dangerous k-subseries assigned with ‘game-over’
outcome and all earlier dangerous k-subseries assigned
the ‘survive’ outcome. By extracting and labeling
dangerous k-subseries from a set of Tetris games, we
obtain a dataset D = (S′i, oci)

n
i=1 , where S′i is a

dangerous k-subseries, and oci ∈ {game over, survive}
is the outcome of S′i. TPRs of Tetris are then can be
mined from D using the algorithms described in Section
3.

5.2 Improving Tal using GA with TPRs A Tal
computes a utility score for each possible position of
the currently given piece, moves and rotates the current
piece to the position with the highest score. The utility
score for each position is determined by a set of features
〈f1, f2, ..., fm〉 such as Pile Height, Holes, and so on.
We refer readers to [2] for more details on the features.

The utility score of a position is calculated as
∑m

i=1 wifi
where 〈w1, w2, ..., wm〉 is a set of weights given to the
features so as to determine the goodness of the position.

GA has been widely used to learn the set of weights.
In GA, a chromosome is represented by a weight vec-
tor 〈w1, w2, ..., wm〉. A fitness function in GA takes a
chromosome as input and returns an evaluation value.
In Tetris, the fitness function is simply the score func-
tion for the game. We run the Tal using the weights in
a chromosome on five Tetris training game sequences.
The average number of pieces placed in the board is
then the value of the chromosome. Other elements in
GA such as crossover, mutation, and selection procedure
follow the recommended settings in [2].

GA improves the weights by iteratively evaluating
the weights of the current Tal, and choosing the weights
that achieve higher scores. In other words, GA learns
weights that perform well on training game sequences.
Suppose the challenging series of falling pieces only
appear a few times in the training games, the weights
obtained by GA will not be able to handle these difficult
series well. To address this shortcoming, we propose
to insert our mined TPRs into the training sequences
frequently. This way, we can guide GA to learn to cope
with the challenges in the series of pieces added using
TPRs. We call this method GA+TPR.

More specifically, in GA+TPR, we use a parameter
r to control the probability of inserting TPRs. When
deciding the next set of pieces to be generated, with an
insertion probability r, the next several pieces will be
the series of pieces corresponding to the antecedent of a
randomly chosen TPR. With probability 1− r, the next
y pieces are randomly chosen from the distinct pieces,
where y is the average length of the set of mined TPRs.
In our experiment, we compare GA+TPR with the
original GA which learns the weights using randomly
generated training sequences.

5.3 Experimental Results

5.3.1 Experiment Setup The experiments are de-
signed to answer the following question: Does insert-
ing TPRs to training sequences help GA learn better
weights for Tal? This allows us to determine the effec-
tiveness of our proposed method.

We first generate 200 Tetris games using a default
Tal with weights W which are learnt by GA. From the
200 Tetris games, we extract a dangerous subsequence
dataset D by setting k = 15, h = 13, and q = 12. The
database contains 808 subseries, of which 200 subseries
are assigned the ‘game over’ outcome, and the remaining
subseries are assigned ‘survive’ outcome. We then
mined 17 TPRs from dataset D with min_sup = 10

0.25 0.5 0.75 1.0

−2000

0

2000

4000

(a) m = 20K

0.25 0.5 0.75 1.0

−2000

0

2000

4000

(b) m = 40K

0.25 0.5 0.75 1.0

−2000

0

2000

4000

6000

8000

(c) m = 60K

0.25 0.5 0.75 1.0

−2000

0

2000

4000

6000

(d) m = 80K

0.25 0.5 0.75 1.0
−2000

0

2000

4000

6000

(e) m = 100K

Figure 7: Performance of using 100 randomly generated test game sequences. m represents the number of training pieces. X-axis represents
the insertion probability r in our method GA+TPR_r. Y-axis represents the score difference between our method with GA in the 100 test
games.

0.25 0.5 0.75 1.0

0

1000

2000

(a) r′ = 0.25

0.25 0.5 0.75 1.0

0

500

1000

(b) r′ = 0.5

0.25 0.5 0.75 1.0

−200

0

200

400

600

(c) r′ = 0.75

0.25 0.5 0.75 1.0

0

200

400

(d) r′ = 1.0

Figure 8: Performance of using 100 TPRs embedded test game sequences. Weight settings are learnt from 100K training pieces. r′ represents
the insertion probability used in the testing game sequences. X-axis and Y-axis are the same as in Figure 7.

and min_conf = rev_conf = 0.7. The average
length of these TPRs (i.e., y) is 7. The set of mined
TPRs are used in method GA+TPR with insertion
probability r. We vary r among 0.25, 0.5, 0.75, and 1.0.
Therefore, we actually have five methods including GA,
GA+TPR_0.25, GA+TPR_0.5, GA+TPR_0.75,
and GA+TPR_1.0. The number of pieces have
been used in training weights is also varied among
20K(20, 000), 40K, 60K, 80K, and 100K.

To compare the above methods, we use the weight
settings learnt from these methods to play the same set
of 100 test games. Our first experiment evaluates the
performance of different methods playing 100 normal
games with the falling pieces generated randomly. To
see how different methods handle the more challenging
games, our second experiment generates test games
with falling pieces generated by TPRs and insertion
probability r′ varied among 0.25, 0.5, 0.75, and 1.0.

To evaluate the effectiveness of our methods, we
compare GA with each method in GA+TPR_r by
computing the difference between the number of pieces
placed by GA+TPR_r and the number of pieces
placed by GA. Our method outperforms GA if the
difference is greater than 0.

5.3.2 Evaluation Results
Normal game performance. Figure 7 shows the
results of our first experiment where test games are
generated randomly. When number of pieces used in
training is greater than or equal to 60K, our methods
GA+TPR_r’s always perform better than GA as the

median value of the score difference is always greater
than 0. When number of training pieces is smaller than
60K, our proposed method fails to perform better for
small r. One possible reason is that there are not enough
TPRs inserted into the training sequences. We would
like to investigate the results in the future.
Challenging game performance. Figure 8 shows
the results of the second experiment where we gener-
ate test games by inserting TPRs with probability r′.
GA+TPR performs much better than GA except for
GA+TPR_0.25 when we inserted TPRs to the test-
ing games with 1.0 probability (i.e., r′ = 1.0). One
possible reason is that learning weights by using only
0.25 TPR insertion probability (i.e., r = 0.25) is not
enough to handle the very challenging games. To our
surprise, method GA+TPR_1.0 is able to learn good
weights for both randomly generated test games and the
test games with TPR inserted pieces. We expected that
GA+TPR_1.0 to overfit those challenging pieces and
perform poorly on randomly generated test pieces. Our
results however show that in Tetris, if a player can han-
dle the challenging pieces well, he/she is also capable of
placing the easy series of pieces effectively.

6 Scalability of TPRMiner
In this section, we report our experimental results
on the performance of TPRMiner with Low-Support
pruning method. To test our algorithm on different data
characteristics, we generated synthetic game datasets
using the standard procedure described in [1], which
has been used in many sequence pattern mining studies

[6, 12]. In our problem setting, each game has an
outcome, so we randomly assign an outcome (i.e., ‘win’
or ‘not win’) to each of the synthetic games.

0.1 0.3 0.5 0.7 0.9
0

100

200

300

400

Relative minimum support (%)

R
u
n
ti
m

e
 (

s
e
c
o
n
d
)

of games = 100,000
of games = 200,000
of games = 400,000

Figure 9: TPRMiner
on datasets with aver-
age 20 steps.

100 200 300 400 500
0

100

200

300

400

Number of games (thousand)

R
u
n
ti
m

e
 (

s
e
c
o
n
d
)

r_min_sup = 0.001
r_min_sup = 0.0006
r_min_sup = 0.0002

Figure 10: TPRMiner
on datasets with aver-
age 20 steps.

20 40 60 80
0

200

400

600

800

R
u
n
ti
m

e
 (

s
e
c
o
n
d
)

Average steps

r_min_sup = 0.001
r_min_sup = 0.0006
r_min_sup = 0.0002

Figure 11: TPRMiner
on datasets with
100, 000 games.

In our experiments, we vary min_sup based on the
number of games (i.e., |D|) in dataset by trying out
different relative minimum supports (i.e., r_min_sup),
which equals to min_sup

|D| . In the following experiments,
we set min_conf = rev_conf = 0.8.

The experiments are used to show TPRMiner’s
scalability with r_min_sup (Figure 9), number of
games (Figure 10) and average steps of the games
(Figure 11). From the results, we can see that (1)
the runtime of TPRMiner reduces significantly as
r_min_sup becomes larger, since the number of fre-
quent patterns reduces significantly; (2) TPRMiner is
linearly scalable with number of games; and (3) As we
increase the average steps of the games, the runtime
of TPRMiner increases. Compared to the runtime of
larger r_min_sup, the runtime of smaller r_min_sup
increases much faster as the average steps of the games
is increased. The reason is that with low support and
long games, there are many more long frequent pat-
terns and mining them is slow. Other than the above
results, we also experimented with different min_conf
and rev_conf settings. The results show that these dif-
ferent settings do not affect the runtime significantly.

7 Conclusion and Future Work
In this paper, we introduce a new concept of TPR. We
distinguish TPR from other types of sequence patterns
by considering the irreversibility of the future outcomes.
Each TPR is associated with three metrics, namely sup-
port, confidence, and upper bound of outcome reverse
probability. These measures give us deeper insight of a
TPR. A scalable algorithm TPRMiner has been pro-
posed. We also demonstrated that how TPRs can help
learn a better game algorithm using Tetris as an ex-
ample. We believe this is the first time, the notion of
turning point is introduced to game mining. A pos-
sible future work is to apply turning point concept to
other application domains such as financial investment
and marketing. With our irreversible outcome property,

the probability of outcome reverse is capped by a user-
defined threshold (i.e., reverse outcome confidence).

Acknowledgments
This work is supported by the National Research Foundation
under its International Research Centre @ Singapore Funding
Initiative and administered by the IDM Programme Office. We
thank the anonymous reviewers for providing their valuable
comments on the pervious version of this paper.

References

[1] R. Agrawal and R. Srikant. Mining Sequential Patterns.
In ICDE, 1995.

[2] N. Böhm, G. Kókai, and S. Mandl. An Evolutionary
Approach to Tetris. In MIC, 2005.

[3] K. Crowley and R. S. Siegler. Flexible Strategy Use
in Young Children’s Tic-Tac-Toe. Cognitive Science,
17(4), 1993.

[4] E. D. Demaine, S. Hohenberger, and D. Liben-Nowell.
Tetris is Hard, Even to Approximate. In COCOON,
2003.

[5] C. P. Fahey. Tetris Specifications and World Records.
http://colinfahey.com/tetris/tetris.html, 2003.

[6] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,
and M.-C. Hsu. FreeSpan: Frequent Pattern-Projected
Sequential Pattern Mining. In KDD, 2000.

[7] J. Han, J. Pei, Y. Yin, and R. Mao. Mining Frequent
Patterns without Candidate Generation: A Frequent-
Pattern Tree Approach. Data Min. Knowl. Discov.,
8(1), 2004.

[8] H. Kim, S. Kim, T. Weninger, J. Han, and T. Abdelza-
her. NDPMine: Efficiently Mining Discriminative Nu-
merical Features for Pattern-Based Classification. In
ECML PKDD, 2010.

[9] N. Lesh, M. J. Zaki, and M. Ogihara. Mining Features
for Sequence Classification. In KDD, 1999.

[10] W. Li, J. Han, and J. Pei. CMAR: Accurate and Effi-
cient Classification Based on Multiple Class-Association
Rules. In ICDM, 2001.

[11] B. Liu, W. Hsu, and Y. Ma. Integrating Classification
and Association Rule Mining. In KDD, 1998.

[12] J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen,
U. Dayal, and M. chun Hsu. PrefixSpan: Mining Se-
quential Patterns Efficiently by Prefix-Projected Pat-
tern Growth. In ICDE, 2001.

[13] R. Srikant and R. Agrawal. Mining Sequential Patterns:
Generalizations and Performance Improvements. In
EDBT, 1996.

[14] C. Thiery and B. Scherrer. Building Controllers for
Tetris. ICGA Journal, 32(1), 2009.

[15] A. Veloso, W. Meira Jr., and M. J. Zaki. Lazy
Associative Classification. In ICDM, 2006.

[16] Z. Xing, J. Pei, and E. Keogh. A Brief Survey
on Sequence Classification. SIGKDD Explor. Newsl.,
12(1), Nov. 2010.

