
RecipeGPT: Generative Pre-training Based Cooking Recipe
Generation and Evaluation System

Helena H. Lee
Singapore Management University

helenalee@smu.edu.sg

Ke Shu
Singapore Management University

keshu@smu.edu.sg

Palakorn Achananuparp
Singapore Management University

palakorna@smu.edu.sg

Philips Kokoh Prasetyo
Singapore Management University

pprasetyo@smu.edu.sg

Yue Liu
Singapore Management University

yueliu@smu.edu.sg

Ee-Peng Lim
Singapore Management University

eplim@smu.edu.sg

Lav R. Varshney
University of Illinois at
Urbana-Champaign

varshney@illinois.edu

ABSTRACT
Interests in the automatic generation of cooking recipes have been
growing steadily over the past few years thanks to a large amount of
online cooking recipes.We present RecipeGPT, a novel online recipe
generation and evaluation system. The system provides two modes
of text generations: (1) instruction generation from given recipe
title and ingredients; and (2) ingredient generation from recipe title
and cooking instructions. Its back-end text generation module com-
prises a generative pre-trained language model GPT-2 fine-tuned
on a large cooking recipe dataset. Moreover, the recipe evaluation
module allows the users to conveniently inspect the quality of the
generated recipe contents and store the results for future reference.
RecipeGPT can be accessed online at https://recipegpt.org/

CCS CONCEPTS
• Information systems→Webapplications; •Computingmethod-
ologies → Natural language processing; • Applied comput-
ing → Consumer health.

KEYWORDS
recipe generation, natural language generation, web application

ACM Reference Format:
Helena H. Lee, Ke Shu, Palakorn Achananuparp, Philips Kokoh Prasetyo,
Yue Liu, Ee-Peng Lim, and Lav R. Varshney. 2020. RecipeGPT: Generative
Pre-training Based Cooking Recipe Generation and Evaluation System. In
Companion Proceedings of the Web Conference 2020 (WWW ’20 Companion),
April 20–24, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3366424.3383536

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7024-0/20/04.
https://doi.org/10.1145/3366424.3383536

1 INTRODUCTION
Automatic generation of cooking recipes is an interesting and practi-
cal research problem that can help overcome the limitations of stan-
dard recipe retrieval systems. Thoughmany online recipe databases,
such as Allrecipes and Yummly, allow users to explicitly include
and exclude specific ingredients in the recipe search, the users have
to use an advanced search interface which can be difficult to under-
stand for novice users. Recipe generation systems can facilitate this
process by directly generating cooking instructions for a specific
recipe given a list of user-specified ingredients. Next, it can also be
used for creative cooking (e.g., IBM Chef Watson [7]), where the
system helps the users to come up with novel and practical ways for
cooking certain dishes, taking into account the complementarity of
ingredients.

A few approaches to recipe text generation have been proposed,
such as knowledge-based models [7] and deep neural networks
models [1, 3, 6]. Large-scale transformer-based language models
have been shown to outperform Recurrent Neural Networks (RNNs)
in several natural language processing (NLP) tasks lately. In text
generation, transformers are known for their effectiveness in captur-
ing complex dependencies and generating fluent sentences. Among
those, OpenAI’s GPT-2, pre-trained on a gigaword-scale textual
dataset, has achieved impressive results in a variety of text genera-
tion tasks [5]. Recent study has also shown that fine-tuning GPT-2
can result in better performance on domain-specific text genera-
tions [10]. However, the effectiveness of pre-trained transformer-
based language models in cooking recipe generation has not yet
been explored.

Similar to other text generation tasks, evaluating the quality of
machine-generated recipe texts is challenging. First, most neural
text generation models are non-deterministic, thus each generation
run produces unique results which are difficult to replicate. Second,
machine-evaluation metrics and human evaluation on text gener-
ations are not well correlated. Third, a lot of efforts are required
to judge the content coverage in the generated text. Finally, the
adaptability of the model has not been well-studied, for example,
generating cooking instructions from novel inputs of recipe title
and ingredient combinations.

181

https://recipegpt.org/
https://doi.org/10.1145/3366424.3383536
https://doi.org/10.1145/3366424.3383536
https://doi.org/10.1145/3366424.3383536


WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan Lee et al.

Figure 1: Overview of RecipeGPT

Figure 2: System Architecture

In this paper, we introduce RecipeGPT, a novel web application
for recipe generation and evaluation, to demonstrate the feasibility
of generative pre-trained transformer in cooking recipe generation
and to assist users in evaluating the generation quality more easily
as illustrated in Figure 1. Users can utilize RecipeGPT to: 1) generate
cooking instructions according to given recipe title and ingredient
texts; and 2) generate ingredients given recipe title and cooking
instruction texts. The system allows users to rate, comment, and
store the generated results. Furthermore, the system also helps
the users compare machine-generated recipes with similar human-
written recipes retrieved from the recipe database.

2 SYSTEM OVERVIEW
Figure 2 shows the system architecture of RecipeGPT. First, the user
client is developed as a web application (presented in Figure 1). Next,
the backend service provides core RESTFul web services which can
be used by clients with an API key. These services include accepting
user inputs, handling user interactions, and returning the generated
results. More specifically, the backend service is composed of two
following modules:

2.1 Generation Module
The generation module relies on a generative pre-trained trans-
former GPT-2, fine-tuned on Recipe1M dataset [4]. We utilize the
fine-tuned model to perform two tasks: ingredient generation and
instruction generation. The details of model training are described

in Section 3. The generation model is trained using Tensorflow
and deployed to the inference engine to handle live requests. Then,
utilizing an API service built upon Nginx and UWSGI server, the
requests are encapsulated and sent to the inference engine acceler-
ated by GPU to increase the request throughput. Lastly, MongoDB
is used as a data storage to optionally save the generated outputs
for future reference and inspection.

2.2 Evaluation Module
The aim of the evaluation module is to provide functionalities to as-
sist the users in individually inspecting the quality of the generated
recipe texts. These are implemented in the following features:

Highlighting of overlapped ingredients. To quickly check
the quality of the generated recipe texts, users may want to com-
pare the overlap of ingredient words in the specified recipe con-
texts and the generated texts. High-quality generations are those
that have the highest degree of overlapped ingredients, i.e., all
ingredient words specified by the users appear in the generated
texts. RecipeGPT facilitates the inspection of overlapped ingredi-
ents through a word highlighting feature. Since recipe authors tend
to use different word variations to refer to the same ingredients
(e.g., simply cheese instead of provolone cheese), we only consider
root nouns of ingredients in the comparison.

Comparing with reference recipes. For each generation run,
RecipeGPT also retrieves the most similar recipe given the specified
recipe contexts (e.g., title, ingredients, etc.) from Recipe1M, stored
in ElasticSearch data storage, to be used as a reference to compare
against the generated recipe texts. We use ElasticSearch’s built-in
search functions for ranking recipes by similarity.

User comments and ratings. Lastly, ReciptGPT provides basic
annotation functions, such as user commenting and rating, to facili-
tate human evaluation of the generated recipe texts. The annotation
data are stored together with the user-saved recipes.

3 TRAINING RECIPE GENERATION MODEL
In this section, we describe in detail the steps to build our recipe
generative pre-training transformer, one of the core components of
the recipe generation module, by fine-tuning GPT-2 on Recipe1M

182



RecipeGPT: Cooking Recipe Generation and Evaluation System WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan

dataset. These involve (1) preprocessing of Recipe1M data; and (2)
training multi-field recipe generation model.

3.1 Data Preprocessing
First, we filter out numerals, quantity words, and other comment
texts in the ingredients using an ingredient phrase parser1 and our
own rule-based filtering. In addition, we remove recipes that contain
non-ingredients and non-instructional sentences (e.g., nutritional
or author information). Finally, we keep the remaining recipes with
at least 2 ingredients, 2 instructional sentences, and 20 words in the
instructions (N = 904,401). From those, two disjointed sets of 4,000
recipes each are reserved for the validation set and the testing set.

Figure 3: Illustration of Multi-field Generation

3.2 Multi-field Learning and Generation
Our aim is to train GPT-2 transformer provided by Radford et al [5]
to generate multi-field recipe documents. Specifically, each recipe
in Recipe1M consists of three fields: title, ingredients, and cooking
instructions. To that end, we follow Zeller et al.’s approach [9] to
perform multi-field learning and generation. Each field is encap-
sulated by field-specific start and end tokens. From the original
training set, we further constructed a multi-field training set by
shuffling the input and the target fields. We also shuffle the order
of ingredients. Figure 3 illustrates how we shuffle the training data
to enable the generation of target fields given recipe contexts as
input fields.

To generate a target field τ , we append the field-specific start
token <start-τ> to the input followed by sampling from the model
until we hit <end-τ>. Note that we might have padding tokens ‘$’
after <end-τ>. During each sampling step, we select a token among
the k highest-ranked tokens of the entire vocabulary sorted by the
prediction probability. This sampling strategy is also known as top-
k sampling. Although the generation process is non-deterministic,
we can control the generation diversity by the hyperparameter k .
The higher the k , the larger the diversity of generated texts.

We select the optimal learning rate based on perplexity using
the validation set. Next, we follow the Byte-Pair Encoding used
in GPT-2 to process the inputs. The maximum number of tokens
is set to 512 since it fully covers 98.6% recipes in Recipes1M. We
add padding tokens at the end of each recipe to unify the sampling
length. For recipes exceedingmaximum tokens, a randomly selected
chunk of 512 tokens is sampled in each training iteration. Due to
the memory limitation in our training environment (16GB), we set
the batch size to 8.
1https://github.com/nytimes/ingredient-phrase-tagger

4 EXPERIMENTS
In this section, we describe the experimental setup to evaluate the
performance of the fine-tuned recipe GPT-2 models on the 4,000
recipe data in the test set. Specifically, two recipe text generation
tasks are focused: (1) generating ingredient texts from recipe title
and cooking instructions; and (2) generating cooking instruction
texts from title and ingredients. We try to find the best sampling
hyperparameters and select the most suitable model for live de-
ployment. Lastly, we further examine the degree of coherence of
ingredients mentioned in different fields within the same recipes.
A high-quality recipe should consistently refer to the same set of
ingredients across all fields.

Figure 4: Extracting Ingredient-containing Root Nouns

4.1 Evaluation Metrics
Ingredient generation. We compute standard F1 scores between
the set of generated ingredients and ground-truth ingredients. More
specifically, we only consider lemmatized root nouns of ingredients
as units of analysis instead of the whole noun phrases in the evalu-
ation. we utilize spaCy2 to identify the lemmatized root nouns as
illustrated in Figure 4(a).

Instruction generation. We compute two standard n-gram
overlap based metrics, BLEU3 and ROUGE4, as well as normalized
tree edit distance (NTED) to measure the overall quality of the
generated instruction texts with respect to the ground-truth in-
structions. For NTED, we employ similar procedures used in Chang
et al. [2], i.e., we represent instructions as a tree structure where the
verbs and nouns (extracted by spaCy) are respectively on stems and
leaves representing the relation of actions (i.e. cooking methods)
and subjects (i.e. ingredients and cooking tools). We then utilize
Zhang-Shasha algorithm to score the edit distance which counts the
numbers of INSERT, REMOVE, and REPLACE operations required
to get the gold reference from the generated instruction. Lastly, we
normalize the tree edit distance by the total number of nodes in
both generated and reference trees.

Between-field ingredient coherenceTypically, we expect that
all ingredient words should be consistently referred to across all
fields. To investigate how well the model captures this phenome-
non, we measure the overlap between a set of ingredient words
extracted from the generated instructions (Iд ) and those in the input
ingredient texts (I ) using Jaccard similarity. First, we extract the
ingredient-containing root nouns from the generated instructions
and the input ingredient texts. We use two extraction methods for
those root nouns as illustrated in Figure 4. The first method has
been applied previously in the F1 calculation. The second method
2https://spacy.io
3https://github.com/moses-smt/mosesdecoder/
4https://pypi.org/project/rouge

183

https://github.com/nytimes/ingredient-phrase-tagger
https://spacy.io
https://github.com/moses-smt/mosesdecoder/
https://pypi.org/project/rouge


WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan Lee et al.

extracts root nouns from instructions using an ingredient dictio-
nary to filter out non-ingredients. The dictionary is derived from [8]
with 89 additional ingredients added by a member of the research
team to increase ingredients coverage with respect to Recipe1M
dataset. In total, the vocabulary contains 1,992 root nouns. Then,
we compute Jaccard similarity scores between the two sets of root
nouns. To establish a baseline, we also perform the same proce-
dures to compare the ingredient coherence between human-written
instructions (Ih ) and human-written ingredients (I ).

4.2 Results
Ingredient and instruction generations. Overall, the results
confirm the effectiveness of RecipeGPT in generating ingredient
and cooking instruction texts. Table 1 displays the model perfor-
mances on different sampling hyperparameters (k) for top-k sam-
pling. The best model is subsequently selected for live deployment.
In Table 1(a), we experiment with different k to examine its effects
on the generation diversity and quality. As we can see, models with
lower k consistently perform better across all evaluation metrics.
Next, k is also positively associated with the length of generation
as indicated by the average number of ingredients and the brevity
penalty. Ultimately, we set k to 3 in the live deployment to achieve
a good balance of quality and diversity.

We also evaluate different training approaches as presented in
Table 1(b). As we can see, all models show similar performance
levels, suggesting that the knowledge captured in the pre-trained
weights are not that helpful when trainingwith a large dataset. Next,
fine-tuning on a more complex model (355M vs. 124M) produces a
superior model according to perplexity, which is consistent with
previous findings [9, 10]. As the generation results among those
models are indistinguishable and it takes approximately 9 seconds
for 124M and 12 seconds for 355M to process a test case, we deploy
the 117M fine-tuned GPT-2 in the live version of RecipeGPT5.

Ingredient coherence. The Jaccard similarity scores between
(Iд , I ) and (Ih , I ) are 0.53 and 0.49, respectively. This suggests that
RecipeGPT captures the between-field ingredient coherence as well
as human authors, if not better. Surprisingly, the score for human-
written instructions is slightly lower than that of the generated
instructions. Upon further inspection, we found that human authors
sometimes refer to the input ingredients as a whole when writing
the instructions instead of mentioning each individual ingredients,
e.g., "combine all ingredients" v.s. "combine vodka and orange juice",
thus lowering the overlap.

5 DEMONSTRATION & CONCLUSION
Demonstration. During the demo session, we will demonstrate
the whole recipe generation and evaluation process as shown in
Figure 1. Both cooking instruction generation and ingredient gener-
ation tasks will be available for demonstration. For each task, users
will provide specific recipe contexts (e.g., recipe title and ingredi-
ents/cooking instructions) to generate respective recipe texts. Single
recipe evaluation features are also available to use. RecipeGPT is
accessible online at https://recipegpt.org/ 6

5Using a learning rate of 1e-4, the deployed model in our system takes 5 days, approx-
imately 5 epochs, to converge in a single NVIDIA Tesla V100 GPU.
6We share the code used to run the experiments at https://github.com/LARC-CMU-
SMU/RecipeGPT-exp.

Table 1: Model Performances
Generation output Ingredients Instructions

F1 # Ingr. BLEU BP R-L NTED PPL
(a) Performances of fine-tuned GPT-2 (124M) on validation set
Top-k sampling with k = 1 0.79 7.6 9.81 0.62 0.39 0.51

k = 3 0.76 7.9 8.29 0.70 0.37 0.52
k = 5 0.7 8.0 7.81 0.75 0.36 0.53
k = 10 0.74 8.3 7.42 0.83 0.35 0.53
k = 30 0.71 8.7 7.15 0.94 0.34 0.54

(b) Performances of different RecipeGPT models on test set
Trained from scratch (124M) 0.75 7.6 8.58 0.71 0.37 0.52 3.77
Fine-tuned GPT-2 (124M) 0.76 7.8 8.34 0.71 0.36 0.52 3.70
Fine-tuned GPT-2 (355M) 0.77 7.9 8.29 0.70 0.37 0.52 3.63

F1: F1 of two sets of lemmatized root nouns, # Ingr: average number of ingredients,
BP: Brevity Penalty estimated in BLEU, R-L: ROUGE-L, NTED: Normalized Tree Edit
Distance, PPL: BPE Perplexity

Conclusion. RecipeGPT is a novel generative pre-trained trans-
former based recipe generation and evaluation system. The eval-
uations illustrate its potential in automatic recipe generation. As
the system is publicly accessible online, we hope that this will en-
courage others to try experimenting with different recipe contexts
to further investigate its potentials and behaviors. Lastly, we also
provide several user-interface features in RecipeGPT to assist users
in examining the quality of the generation at the recipe level, and
suggest potential ways to improve recipe generation models.

ACKNOWLEDGMENTS
This research is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its International Research
Centres in Singapore Funding Initiative.

REFERENCES
[1] Antoine Bosselut, Omer Levy, Ari Holtzman, Corin Ennis, Dieter Fox, and Yejin

Choi. 2017. Simulating action dynamics with neural process networks. arXiv
preprint arXiv:1711.05313 (2017).

[2] Minsuk Chang, Léonore V Guillain, Hyeungshik Jung, Vivian M Hare, Juho Kim,
and Maneesh Agrawala. 2018. Recipescape: An interactive tool for analyzing
cooking instructions at scale. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, 451.

[3] Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni, and Julian McAuley. 2019.
Generating Personalized Recipes from Historical User Preferences. In EMNLP.
5975–5981. https://www.aclweb.org/anthology/D19-1613

[4] Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf
Aytar, Ingmar Weber, and Antonio Torralba. 2019. Recipe1m+: A dataset for
learning cross-modal embeddings for cooking recipes and food images. IEEE
transactions on pattern analysis and machine intelligence (2019).

[5] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI
Blog 1, 8 (2019).

[6] Amaia Salvador, Michal Drozdzal, Xavier Giro-i Nieto, and Adriana Romero. 2019.
Inverse cooking: Recipe generation from food images. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 10453–10462.

[7] Lav R Varshney, F Pinel, KR Varshney, D Bhattacharjya, A Schörgendorfer, and
Y-M Chee. 2019. A big data approach to computational creativity: The curious
case of Chef Watson. IBM Journal of Research and Development 63, 1 (2019), 7–1.

[8] IngmarWeber and Palakorn Achananuparp. 2016. Insights frommachine-learned
diet success prediction. In Biocomputing 2016: Proceedings of the Pacific Symposium.
World Scientific, 540–551.

[9] Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi,
Franziska Roesner, and Yejin Choi. 2019. Defending Against Neural Fake News.
arXiv preprint arXiv:1905.12616 (2019).

[10] Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang
Gao, Jianfeng Gao, Jingjing Liu, and Bill Dolan. 2019. DIALOGPT: Large-Scale
Generative Pre-training for Conversational Response Generation. arXiv preprint
arXiv:1911.00536 (2019).

184

https://recipegpt.org/
https://github.com/LARC-CMU-SMU/RecipeGPT-exp
https://github.com/LARC-CMU-SMU/RecipeGPT-exp
https://www.aclweb.org/anthology/D19-1613

	Abstract
	1 Introduction
	2 System Overview
	2.1 Generation Module
	2.2 Evaluation Module

	3 Training Recipe Generation Model
	3.1 Data Preprocessing
	3.2 Multi-field Learning and Generation

	4 Experiments
	4.1 Evaluation Metrics
	4.2 Results

	5 Demonstration & Conclusion
	Acknowledgments
	References

